首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5548篇
  免费   627篇
  国内免费   12篇
电工技术   58篇
综合类   3篇
化学工业   1480篇
金属工艺   186篇
机械仪表   382篇
建筑科学   85篇
矿业工程   1篇
能源动力   329篇
轻工业   596篇
水利工程   6篇
石油天然气   5篇
无线电   971篇
一般工业技术   1317篇
冶金工业   142篇
原子能技术   106篇
自动化技术   520篇
  2024年   2篇
  2023年   80篇
  2022年   124篇
  2021年   236篇
  2020年   157篇
  2019年   159篇
  2018年   206篇
  2017年   245篇
  2016年   252篇
  2015年   251篇
  2014年   311篇
  2013年   416篇
  2012年   472篇
  2011年   561篇
  2010年   353篇
  2009年   342篇
  2008年   301篇
  2007年   228篇
  2006年   212篇
  2005年   174篇
  2004年   155篇
  2003年   164篇
  2002年   124篇
  2001年   87篇
  2000年   97篇
  1999年   71篇
  1998年   95篇
  1997年   66篇
  1996年   52篇
  1995年   32篇
  1994年   34篇
  1993年   17篇
  1992年   22篇
  1991年   9篇
  1990年   16篇
  1989年   14篇
  1988年   6篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有6187条查询结果,搜索用时 15 毫秒
1.
2.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
3.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
4.
5.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
6.
A facile sol–gel procedure has been developed for the synthesis of colloidal alumina nanocrystals. For the first time, optical characterization procedures were employed to study the quantum confinement effects in optical properties of the prepared Al2O3 sol. Accordingly, the hyperbolic band model was used to determine the optical band gap of colloidal alumina nanocrystals. X‐Ray diffraction pattern was used to study the crystallographic phase of the dried gel. Morphological characterization was performed using scanning electron microscopy (SEM). Inductively Coupled Plasma (ICP) emission spectroscopy was used to determination purity of the Al2O3 powder. High‐resolution TEM showed that the diameter of colloidal nanocrystals is about 10 nm. Photoluminescence spectroscopy demonstrated that quantum yields for colloidal nanocrystals are 68% with 300 nm excitation wavelength. The experimental observations confirm that highly stable alumina sol with strong UV emission was synthesized. The mentioned optical properties have not been reported before.  相似文献   
7.
We present a distribution‐free tabular cumulative sum chart for monitoring the variability of an autocorrelated process. A quantity known as the asymptotic variance parameter is employed as a measure of the variability, and a distribution‐free tabular cumulative sum chart is applied to variance estimates calculated from batches of nonoverlapping samples. The proposed chart is applicable to a stationary process with a general marginal distribution and a general autocorrelation structure. It also determines control limits analytically without trial‐and‐error simulations. The performance of the proposed chart is tested on stationary processes with both normal and nonnormal marginals with various autocorrelation structures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
We have developed a new type of tunable band rejection filter, which provides high spectral-shaping flexibility in a wide tuning range. The filter consists of a long-period fiber grating (LPFG) with divided coil heaters. Each of the divided coil heaters is controlled individually to adjust a temperature distribution along the LPFG and to modify the spectral shape of the LPFG filter. The tunable band rejection filter is demonstrated to function properly when applied as an erbium-doped fiber amplifier gain-flattening filter.  相似文献   
9.
In this study, a theoretical method for predicting the longitudinal dispersion coefficient is developed based on the transverse velocity distribution in natural streams. Equations of the transverse velocity profile for irregular cross sections of the natural streams are analyzed. Among the velocity profile equations tested in this study, the beta distribution equation, which is a probability density function, is considered to be the most appropriate model for explaining the complex behavior of the transverse velocity structure of irregular natural streams. The new equation for the longitudinal dispersion coefficient that is based on the beta function for the transverse velocity profile is developed. A comparison of the proposed equation with existing equations and the observed longitudinal dispersion coefficient reveals that the proposed equation shows better agreement with the observed data compared to other existing equations.  相似文献   
10.
In the present study first‐order shear deformable shell finite elements based on general curvilinear co‐ordinates are proposed. For the development of the present shell elements, a partial mixed variational functional with independently assumed strains is provided in order to avoid the severe locking troubles known as transverse shear and membrane lockings. Bubble functions are included in the shape function of displacement to improve the performance of the developed element. The proposed assumed strain four‐ and nine‐node elements based on the general tensor shell theory provide an efficient linkage framework for shell surface modelling and finite element analysis. In the several benchmark problems, the present shell elements with exact geometric representations demonstrate their performance compared to previously reported results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号