首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5567篇
  免费   357篇
  国内免费   23篇
电工技术   75篇
综合类   19篇
化学工业   1441篇
金属工艺   178篇
机械仪表   132篇
建筑科学   161篇
矿业工程   22篇
能源动力   189篇
轻工业   840篇
水利工程   56篇
石油天然气   32篇
武器工业   2篇
无线电   393篇
一般工业技术   1022篇
冶金工业   527篇
原子能技术   60篇
自动化技术   798篇
  2023年   52篇
  2022年   80篇
  2021年   190篇
  2020年   136篇
  2019年   151篇
  2018年   234篇
  2017年   216篇
  2016年   208篇
  2015年   201篇
  2014年   258篇
  2013年   508篇
  2012年   290篇
  2011年   358篇
  2010年   338篇
  2009年   284篇
  2008年   214篇
  2007年   194篇
  2006年   131篇
  2005年   82篇
  2004年   93篇
  2003年   114篇
  2002年   112篇
  2001年   80篇
  2000年   77篇
  1999年   51篇
  1998年   184篇
  1997年   125篇
  1996年   115篇
  1995年   76篇
  1994年   60篇
  1993年   75篇
  1992年   39篇
  1991年   30篇
  1990年   27篇
  1989年   28篇
  1988年   20篇
  1987年   22篇
  1986年   22篇
  1985年   32篇
  1984年   29篇
  1983年   28篇
  1982年   25篇
  1981年   45篇
  1980年   34篇
  1979年   34篇
  1978年   30篇
  1977年   33篇
  1976年   54篇
  1975年   25篇
  1973年   24篇
排序方式: 共有5947条查询结果,搜索用时 15 毫秒
1.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
2.
3.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
4.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
5.
Deshmukh  P.  Sar  S. K.  Smječanin  N.  Nuhanović  M.  Lalwani  R. 《Radiochemistry》2022,64(4):532-542
Radiochemistry - Magnetically modified waste bark of the Aegle marmelos tree was prepared by using green synthesis method and was used in a batch system for U(VI) removal from aqueous solution. The...  相似文献   
6.
Bioactive glasses and glass-ceramics (GCs) effectively regenerate bone tissue, however most GCs show improved mechanical properties. In this work, we developed and tested a rarely studied bioactive glass composition (24.4K2O-26.9CaO-46.1SiO2-2.6P2O5 mol%, identified as 45S5-K) with different particle sizes and heating rates to obtain a sintered GC that combines good fracture strength, low elastic modulus, and bioactivity. We analyzed the influence of the sintering processing conditions in the elastic modulus, Vickers microhardness, density, and crystal phase formation in the GC. The best GC shows improved properties compared with its parent glass. This glass achieves a good densification degree with a two-step viscous flow sintering approach and the resulting GC shows as high bioactivity as that of the standard 45S5 Bioglass®. Furthermore, the GC elastic modulus (56 GPa) is relatively low, minimizing stress shielding. Therefore, we unveiled the glass sintering behavior with concurrent crystallization of this complex bioactive glass composition and developed a potential GC for bone regeneration.  相似文献   
7.
Here, a fluoride-assisted route for the controlled in-situ synthesis of metal nanoparticles (NPs) (i.e., AgNPs, AuNPs) on polydimethylsiloxane (PDMS) is reported. The size and coverage of the NPs on the PDMS surface are modulated with time and over space during the synthetic process, leveraging the improved yield (10×) and faster kinetics (100×) of NP formation in the presence of F ions, compared to fluoride-free approaches. This enables the maskless preparation of both linear and step gradients and patterns of NPs in 1D and 2D on the PDMS surface. As an application in flexible plasmonics/photonics, continuous and step-wise spatial modulations of the plasmonic features of PDMS slabs with 1D and 2D AgNP gradients on the surface are demonstrated. An excellent spatially resolved tuning of key optical parameters, namely, optical density from zero to 5 and extinction ratio up to 100 dB, is achieved with AgNP gradients prepared in AgF solution for 12 minutes; the performance are comparable to those of commercial dielectric/interference filters. When used as a rejection filter in optical fluorescence microscopy, the AgNP-PDMS slabs are able to reject the excitation laser at 405 nm and retain the green fluorescence of microbeads (100 µm) used as test cases.  相似文献   
8.
The contamination of honey with hepatotoxic pyrrolizidine alkaloids (PAs) is a well-known hazard for food safety. While management strategies and controls of the honey industry aim to reduce the PA levels, uncertainties remain with regard to the safety of regionally produced and marketed honey. In addition, a previous study showed large differences of results obtained after various periods of storage and apparent differences between the analytical results of different laboratories. Therefore, this study aimed at examining these uncertainties by monitoring the impact of storage on the PA and PA N-oxide (PANO) content of two freshly harvested honeys and on possible demixing effects caused by pollen settling. Additionally, three analytical approaches – target analysis with matrix-matched calibration or standard addition and a sum parameter method – were applied for a comparative analysis of 20 honeys harvested in summer 2016. All samples originated from Schleswig-Holstein in Northern Germany where the PA plant Jacobaea vulgaris is currently observed on a massive scale. The results of the time series analyses showed that PANO levels markedly decreased within a few weeks and practically reached the LOD 16 weeks after harvest. Tertiary PAs, by contrast, remained stable and did not increase as a consequence of PANO decrease. The experiments on a putative demixing, which may result in a heterogeneous distribution of PAs/PANOs, revealed that there was no such effect during storage of up to 12 weeks. A comparison of the PA/PANO levels obtained by different analytical approaches showed that in some cases the sum parameter method yielded much higher levels than the target approaches, whereas in other cases, the target analysis with standard addition found higher levels than the other two methods. In summary, the results of this study highlight uncertainties regarding the validity and comparability of analytical results and consequently regarding health risk assessment.  相似文献   
9.
This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号