首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
轻工业   2篇
  2021年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
With the ever-increasing demands for functional and sustainable foods from the general public, there is currently a paradigm shift in the food industry toward the production of novel protein-based diet. Food scientists are therefore motivated to search for natural protein sources and innovative technologies to modify their chemical structure for desirable functionality and thus utilization. Deamidation is a viable, efficient, and attractive approach for modifying proteins owing to its ease of operating, specificity, and cost-effective processes. Over the past three decades, the knowledge of protein deamidation for food applications has evolved drastically, including the development of novel approaches for deamidation, such as protein-glutaminase and ion exchange resin, and their practices in new protein substrate. Thanks to deamidation, enhanced functionalities of food proteins from cereals, legumes, milk, oil seeds and others, and thereby their processabilities as food ingredients have been achieved. Moreover, deamidated proteins have been used to fabricate engineered food colloids, including self-assembled protein particles, protein–metallic complexes, and protein–carbohydrate complexes, which have demonstrated tailored physicochemical properties to modulate oral perception, improve gastrointestinal digestion and bioavailability, and protect and/or deliver bioactive nutrients. Novel bioactivity, altered digestibility, and varied allergenicity of deamidated proteins are increasingly recognized. Therefore, deamidated proteins with novel techno-functional and biological properties hold both promise and challenges for future food applications, and a comprehensive review on this area is critically needed to update our knowledge and provide a better understanding on the protein deamidation and its emerging applications.  相似文献   
2.
Abstract: The effect of enzymatic deamidation by protein‐glutaminase (PG) on protein solubility and flavor binding potential of soymilk was studied. Treatment of soymilk with PG for 2 h (temperature of 44 °C and enzyme:substrate ratio (E/S) of 40 U/g protein) resulted in high degree of protein deamidation (66.4% DD) and relatively low degree of protein hydrolysis (4.25% DH). Deamidated (DSM) and control soymilks (CSM) did not differ with respect to aroma, but differed in taste characteristics by sensory evaluation. Protein solubility in DSM was enhanced at weakly acidic conditions (pH 5.0), but did not differ from non‐deamidated soymilk at pH values of 3.0 and 7.0. Odor detection thresholds for the flavor compounds vanillin and maltol were approximately 5 and 3 fold lower, respectively, in DSM than in CSM. Dose‐response curves (Fechner's law plots and n exponents from Stevens's power law) further demonstrated that DSM had a lower flavor binding potential than CSM. PG deamidation has the potential to reduce flavor binding problems encountered in high protein‐containing foods and beverages. Practical Application: The findings of this study can help lead to the development of technology to produce protein‐containing foods with improved functional properties, especially protein solubility, and potentially decreased flavor fade problems associated with flavor‐protein interactions, especially with carbonyl containing flavor compounds.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号