首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
化学工业   16篇
轻工业   24篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   7篇
  2008年   3篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Using a 1,3-regioselective lipase as a catalyst, soybean oil and olive oil were interesterified with the short-chain triacylglycerol tributyrin (1,2,3-tributyrylglycerol) to produce mixtures of structured triacylglycerols (SL-TAG). The SL-TAG were purified by column chromatography and analyzed by both normal-phase (silica column; NPSIL) and reversed-phase [octadecyl silane (ODS) column] high-performance liquid chromatography (HPLC). Individual SL-TAG molecular species were detected by evaporative light-scattering detection, and characterized by mass spectrometry. NPSIL HPLC successfully separated the newly synthesized SL-TAG into two groups of TAG: one composed of one butyryl group and two long-chain fatty acyl groups (from soybean or olive oil); the second was composed of two butyryl groups and one long-chain fatty acyl group. The SL-TAG species were further analyzed by reversed-phase HPLC which gave a more detailed separation of the TAG species present in the two SL-TAG.  相似文献   
2.
Decarboxylation of ferulic acid would increase the solubility in oils. Rice bran extract (RBE) containing 29 mg ferulic acid/g RBE was decarboxylated to obtain decarboxylated rice bran extract (DRBE), and its antioxidant capacity in oil system was studied. After addition of DRBE (500 ppm), oxidation was monitored for 20 days at 60 °C under the dark. To compare the oxidation degree, 500 ppm of ferulic acid and well-known lipid soluble antioxidant, α-tocopherol, were used. Contents of conjugated dienes and aldehydes were measured using 1H NMR as well as peroxide value (POV). On 7 days of oxidation, DRBE (539.0 meq/kg oil) showed lower POV than the control (819.7 meq/kg oil). Also, contents of total conjugated form and aldehydes were 194.60, and 5.94 mmol/L oil, which were lower than those of control (323.63 and 15.94 mmol/L oil). However, after 10 days of oxidation, antioxidant capacity of DRBE was not observed.  相似文献   
3.
The purpose of this study was to enrich α-linolenic acid (ALA) on the triacylglycerol (TAG) molecules of the selected vegetable oils (soybean and corn oil) in order to synthesized structural lipid (SL) with low ω6 to ω3 ratio. SLs were synthesized by lipase-catalyzed interesterification of soybean (SO) and corn oil (CO) with perilla oil (PO). Lipozyme RM IM from Rhizomucor miehei (5% by weight of total substrate) was used for the reaction. The reaction was performed during 24 hr at 55°C in the stirred-batch type reactor with solvent free system. After 24 hr reaction the ratio of ω6 to ω3 in SL products dramatically decreased comparing to that of substrates (SO and CO) before the reaction. At sn-2 position, the contents of ALA were 25.99% in soybean-SL and 23.25% in corn-SL, respectively. According to the equivalent carbon number (ECN) of TAG profile, newly produced SLs were separated by reverse-phase high performance liquid chromatography (HPLC). These results indicated that lipase-catalyzed interesterification is effective to produce SL with low ω6 to ω3 ratio which might be used as health beneficial oil.  相似文献   
4.
Food Science and Biotechnology - An effective evaluation model was established to digitize the quality of cocoa butter equivalents (CBEs) based on determinations of total and sn-2 fatty acid...  相似文献   
5.
Food Science and Biotechnology - In this study, a headspace gas chromatography (HS-GC) method was carried out to determine the contents of acetaldehyde, methanol and fusel oils in distilled liquors...  相似文献   
6.
Structured lipids were synthesized by transesterification of peanut oil and caprylic acid in a stirred-batch reactor. Different substrate molar ratios (1:1 to 1:4, peanut oil/caprylic acid) were used. The reaction was performed for 72 h at 50°C catalyzed by IM60 lipase from Rhizomucor miehei (10 g, 2% w/w substrate) in the absence of organic solvent. The highest incorporation of caprylic acid was obtained with a 1:2 molar ratio (peanut oil/caprylic acid) after 72 h reaction. With a 1:2 molar ratio, the incorporation increased by 28% from 1:1. On the other hand, a 1:4 molar ratio gave the lowest incorporation during the reaction. The effect of different mixing speeds (200, 640, or 750 rpm) on reaction was studied with a 1:2 substrate molar ratio for 24 h. A high incorporation of caprylic acid (14.3 mol%) was obtained at 640 rpm, while 200 rpm gave the lowest incorporation (2.2 mol%), suggesting that good mixing is essential in a stirred-batch reactor. After 24 h of reaction at different rpm, IM60 lipase was recovered, washed with hexane, and reacted with substrates to study its stability after reaction at different mixing speeds. The results showed that caprylic acid incorporation was similar (24.9, 24.3, 24.2 mol%) at 200, 640, and 750 rpm, respectively. When 20 g of IM60 lipase (4% w/w substrate) instead of 10 g was used in a 1:1 substrate molar ratio reaction, the incorporation of caprylic acid increased by 26% after 72 h. To study enzyme reuse, 10 g of IM60 lipase was used in a 1:1 substrate molar ratio for 24 h at 640 rpm. The incorporation of caprylic acid gradually decreased with increased number of reuses. During five times of reuse, 15, 13.9, 9.6, 6.7, and 9.7 mol% of caprylic acid were incorporated into peanut oil, respectively.  相似文献   
7.
Structured lipids (SL) containing n-3 polyunsaturated (eicosapentaenoic or docosahexaenoic) and mediumchain (caprylic) fatty acids were synthesized in gram quantities and characterized. Tricaprylin was mixed with n-3-rich polyunsaturated fatty acids in a 1:2 molar ratio and transesterified by incubating at 55°C in hexane with SP 435 lipase (10% by wt of total substrates) in a 125-mL Erlenmeyer flask as the bioreactor. After several batches of reaction, the products were pooled and hexane was evaporated. Short-path distillation was used for purification of synthesized SL. The distillation conditions were 1.1 Torr and 170°C at a feed flow rate of 3 mL/min. Up to 240 g of SL was isolated and deacidified by alkaline extraction or ethanol-water solvents. The fatty acid profile, free fatty acid value, saponification number, iodine value, peroxide value, thiobarbituric acid, and conjugated diene contents were determined. Oxidation stability, with α-tocopherol as antioxidant, and the oxidative stability index were also determined.  相似文献   
8.
Lipase-catalyzed interesterified solid fat was produced with fully hydrogenated soybean oil (FHSBO), and rapeseed oil (RSO) and palm stearin (PS) in a weight ratio of 15:20:65, 15:40:45 and 15:50:35. The interesterified fats contained palmitic (27.8–44.6%), stearic (15.6–16.2%), oleic (27.5–36.5%) and linoleic acids (8.0–13.5%). After interesterification of the blends, the physical properties of the products changed and showed lower melting points and solid fat contents, different melting and crystallization behaviors as well as the formation of more stable crystals. The produced interesterified fats (FHSBO:RSO:PS 15:20:65, 15:40:45 and 15:50:35 blends) contained desirable crystal polymorphism (β′ form) as determined by X-ray diffraction spectroscopy, a long plastic range with solid fat content of 51–63% at 10 °C to 4–12% at 40 °C, and melting points of 39 (15:50:35), 42 (15:50:45) and 45 °C (15:20:65). However, a reduction in tocopherols (α and γ) content and a reduced oxidative stability were observed in the interesterified fats. The physical properties of the interesterifed fats were influenced by the amount of PS, resulting in more hardness and higher solid fat contents for 15:20:65 than 15:40:45 and 15:50:35 blends. The present study suggested that the produced interesterified fats containing trans-free fatty acids could be used as alternatives to hydrogenated types of bakery shortenings.  相似文献   
9.
Interesterified perilla oil (IPO) was produced from rearrangement of fatty acids in perilla oil (PO) using Lipozyme RM IM-catalyzed interesterification. IPO showed a total fatty acid composition similar to PO; however, the positional distributions of ω-3 linolenic acid (ω-3 Ln, ALA) of these two oils were different. Thermal oxidation was performed at 40°C in the dark and oxidative stabilities of PO and IPO were investigated using 1H NMR. After 20 days of oxidation, the concentration of ALA in IPO (47.9±1.3%) was significantly (p<0.05) higher than in PO (40.4±0.6%). IPO (40.6±5.5 mM oil) produced significantly (p<0.05) lower amounts of aldehydes (secondary oxidation products) than PO (61.6±2.0 mM oil). GC and HPLC results showed that the distribution of ALA in the LnLnLn molecule within TAG species was the main reason for improvement in the oxidative stability of IPO.  相似文献   
10.
Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were selected to synthesize symmetrical SL since recently NRRL Y-7723 lipase was identified as a novel cold-active lipase. Both lipases showed 1,3-regiospecifity toward the glycerol backbone of borage oil. The effects of enzyme loading and temperature on caprylic acid incorporation into the borage oil were investigated. For Lipozyme RM IM and NRRL Y-7723 lipase, the incorporation of caprylic acid increased as enzyme loading increased up to 4% of total weight of the substrate, but significant increases were not observed when enzyme loading was further increased. The activity of NRRL Y-7723 lipase was higher than that of Lipozyme RM IM in the temperature range between 10 and 20 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号