首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1073篇
  免费   59篇
电工技术   8篇
化学工业   359篇
金属工艺   4篇
机械仪表   21篇
建筑科学   51篇
矿业工程   2篇
能源动力   14篇
轻工业   253篇
水利工程   66篇
石油天然气   4篇
无线电   39篇
一般工业技术   117篇
冶金工业   74篇
原子能技术   11篇
自动化技术   109篇
  2024年   4篇
  2023年   13篇
  2022年   66篇
  2021年   69篇
  2020年   37篇
  2019年   34篇
  2018年   41篇
  2017年   39篇
  2016年   46篇
  2015年   41篇
  2014年   46篇
  2013年   93篇
  2012年   68篇
  2011年   80篇
  2010年   49篇
  2009年   47篇
  2008年   42篇
  2007年   57篇
  2006年   43篇
  2005年   39篇
  2004年   30篇
  2003年   20篇
  2002年   22篇
  2001年   17篇
  2000年   8篇
  1999年   2篇
  1998年   15篇
  1997年   7篇
  1996年   10篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1132条查询结果,搜索用时 11 毫秒
1.
Lithiasis may develop in the prostate loge following prostate surgery. Calculus formation in the prostate can be ascribed basically to foreign bodies, residual adenomatous spheroids and clots or fragments of sphacelous mucosa in the presence of a stenotic area after surgery and/or infection. The diagnosis is based on the physical examination and particularly on the radiological findings. Treatment is by open surgery or endoscopic or extracorporeal lithotripsy.  相似文献   
2.
3.
A dynamic mutation in exon 1 of the FMR1 gene causes Fragile X-related Disorders (FXDs), due to the expansion of an unstable CGG repeat sequence. Based on the CGG sequence size, two types of FMR1 alleles are possible: “premutation” (PM, with 56-200 CGGs) and “full mutation” (FM, with >200 triplets). Premutated females are at risk of transmitting a FM allele that, when methylated, epigenetically silences FMR1 and causes Fragile X syndrome (FXS), a very common form of inherited intellectual disability (ID). Expansions events of the CGG sequence are predominant over contractions and are responsible for meiotic and mitotic instability. The CGG repeat usually includes one or more AGG interspersed triplets that influence allele stability and the risk of transmitting FM to children through maternal meiosis. A unique mechanism responsible for repeat instability has not been identified, but several processes are under investigations using cellular and animal models. The formation of unusual secondary DNA structures at the expanded repeats are likely to occur and contribute to the CGG expansion. This review will focus on the current knowledge about CGG repeat instability addressing the CGG sequence expands.  相似文献   
4.
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by parenchymal scarring, leading progressively to alveolar architecture distortion, respiratory failure, and eventually death. Currently, there is no effective treatment for IPF. Previously, 3′5-dimaleamylbenzoic acid (3′5-DMBA), a maleimide, demonstrated pro-apoptotic, anti-inflammatory, and anti-cancer properties; however, its potential therapeutic effects on IPF have not been addressed. Bleomycin (BLM) 100 U/kg was administered to CD1 mice through an osmotic minipump. After fourteen days of BLM administration, 3′5-DMBA (6 mg/kg or 10 mg/kg) and its vehicle carboxymethylcellulose (CMC) were administered intragastrically every two days until day 26. On day 28, all mice were euthanized. The 3′5-DMBA effect was assessed by histological and immunohistochemical staining, as well as by RT-qPCR. The redox status on lung tissue was evaluated by determining the glutathione content and the GSH/GSSG ratio. 3′5-DMBA treatment re-established typical lung histological features and decreased the expression of BLM-induced fibrotic markers: collagen, α-SMA, and TGF-β1. Furthermore, 3′5-DMBA significantly reduced the expression of genes involved in fibrogenesis. In addition, it decreased reduced glutathione and increased oxidized glutathione content without promoting oxidative damage to lipids, as evidenced by the decrease in the lipid peroxidation marker 4-HNE. Therefore, 3′5-DMBA may be a promising candidate for IPF treatment.  相似文献   
5.
New generation photovoltaic (PV) devices such as polymer and dye sensitized solar cells (DSC) have now reached a more mature stage of development, and among their various applications, building integrated PVs seems to have the most promising future, especially for DSC devices. This new generation technology has attracted an increasing interest because of its low cost due to the use of cheap printable materials and simple manufacturing techniques, easy production, and relatively high efficiency. As for the more consolidated PV technologies, DSCs need to be tested in real operating conditions and their performance compared with other PV technologies to put into evidence the real potential. This work presents the results of a 3 months outdoor monitoring activity performed on a DSC mini‐panel made by the Dyepower Consortium, positioned on a south oriented vertical plane together with a double junction amorphous silicon (a‐Si) device and a multi‐crystalline silicon (m‐Si) device at the ESTER station of the University of Rome Tor Vergata. Good performance of the DSC mini‐panel has been observed for this particular configuration, where the DSC energy production compares favorably with that of a‐Si and m‐Si especially at high solar angles of incidence confirming the suitability of this technology for the integration into building facades. This assumption is confirmed by the energy produced per nominal watt‐peak for the duration of the measurement campaign by the DSC that is 12% higher than that by a‐Si and only 3% lower than that by m‐Si for these operating conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
Self-Assembly Monolayers (SAMs) are considered a promising route for solving technological hindrances (such as bias-stress, contact resistance, charge trapping) affecting the electrical performances of the Organic Field-Effect Transistors (OFETs). Here we use an OFET based on pentacene thin film to investigate the charge transport across conjugated SAMs at the Au/pentacene interface. We synthesized a homolog series of π-conjugated molecules, termed Tn-C8-SH, consisting of a n-unit oligothienyl Tn (n = 1…4) bound to an octane-1-thiol (C8-SH) chain that self-assembles on the Au electrodes. The multi-parametric response of such devices yields an exponential behavior of the field-effect mobility (μ), current density (J), and total resistivity (R), due to the SAM at the charge injection interface (i.e. Au-SAM-pentacene). The surface treatment of the OFETs induces a clear stabilization of different parameters, like sub-threshold slope and threshold voltage, thanks to standardized steps in the fabrication process.  相似文献   
7.
Herein, a novel polymer‐templated strategy is described to obtain 2D nickel‐based MOF nanosheets using Ni(OH)2, squaric acid, and polyvinylpyrrolidone (PVP), where PVP has a dual role as a structure‐directing agent, as well as preventing agglomeration of the MOF nanosheets. Furthermore, a scalable method is developed to transform the 2D MOF sheets to Ni7S6/graphene nanosheet (GNS) heterobilayers by in situ sulfidation using thiourea as a sulfur source. The Ni7S6/GNS composite shows an excellent reversible capacity of 1010 mAh g?1 at 0.12 A g?1 with a Coulombic efficiency of 98% capacity retention. The electrochemical performance of the Ni7S6/GNS composite is superior not only to nickel sulfide/graphene‐based composites but also to other metal disulfide–based composite electrodes. Moreover, the Ni7S6/GNS anode exhibits excellent cycle stability (≈95% capacity retention after 2000 cycles). This outstanding electrochemical performance can be attributed to the synergistic effects of Ni7S6 and GNS, where GNS serves as a conducting matrix to support Ni7S6 nanosheets while Ni7S6 prevents restacking of GNS. This work opens up new opportunities in the design of novel functional heterostructures by hybridizing 2D MOF nanosheets with other 2D nanomaterials for electrochemical energy storage/conversion applications.  相似文献   
8.
One of the major challenges in medicine is the delivery and control of drug release over time. Current approaches take advantage of mesostructured silica nanoparticles (MSNs) as carriers but suffer several problems including complex synthesis that requires sequential steps for (1) removal of surfactants and (2) functionalization of MSNs to allow upload of the drugs. Here, a novel solution is presented to these restrictions: the design of drug‐structure‐directing agents (DSDAs) with dual inherent pharmacological activity and ability to direct the formation of solid and hollow‐shell MSNs. Pharmacologically active DSDAs obtained by amidation of drugs with fatty acids are allowed to form micelles, around which the inorganic species self‐assembled to form MSNs. Since the DSDAs direct the formation of MSNs, the steps to remove surfactants, functionalization, and drug upload are not required. The MSNs thus prepared provide sustained release of the drug over more than six months, as well as rapid cellular internalization by both physiological and tumoral human colon cells without affecting cell viability. Moreover, the gradual intracellular release of both, the active drug and lipid moiety with potential nutraceutical properties is proved. MSN particles designed with this approach are promising vehicles for controlled and sustained intra‐or extracellular drug‐delivery.  相似文献   
9.
10.
The skin is the largest organ of the human body, serving as an effective mechanical barrier between the internal milieu and the external environment. The skin is widely considered the first-line defence of the body, with an essential function in rejecting pathogens and preventing mechanical, chemical, and physical damages. Keratinocytes are the predominant cells of the outer skin layer, the epidermis, which acts as a mechanical and water-permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. During this migration process, keratinocytes undertake a differentiation program known as keratinization process. Dysregulation of this differentiation process can result in a series of skin disorders. In this context, aquaporins (AQPs), a family of membrane channel proteins allowing the movement of water and small neutral solutes, are emerging as important players in skin physiology and skin diseases. Here, we review the role of AQPs in skin keratinization, hydration, keratinocytes proliferation, water retention, barrier repair, wound healing, and immune response activation. We also discuss the dysregulated involvement of AQPs in some common inflammatory dermatological diseases characterised by skin barrier disruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号