首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   29篇
  国内免费   4篇
电工技术   8篇
综合类   1篇
化学工业   99篇
金属工艺   2篇
机械仪表   12篇
建筑科学   14篇
能源动力   29篇
轻工业   50篇
水利工程   1篇
石油天然气   2篇
无线电   28篇
一般工业技术   111篇
冶金工业   26篇
原子能技术   1篇
自动化技术   59篇
  2024年   4篇
  2023年   14篇
  2022年   14篇
  2021年   15篇
  2020年   16篇
  2019年   16篇
  2018年   22篇
  2017年   22篇
  2016年   19篇
  2015年   7篇
  2014年   20篇
  2013年   60篇
  2012年   40篇
  2011年   32篇
  2010年   14篇
  2009年   17篇
  2008年   10篇
  2007年   15篇
  2006年   4篇
  2005年   12篇
  2004年   12篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   10篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有443条查询结果,搜索用时 15 毫秒
1.
Time synchronization is mandatory for applications and services in wireless sensor networks which demand common notion of time. If synchronization to stable time sources such as Coordinated Universal Time (UTC) is required, employing the method of flooding in order to provide time synchronization becomes crucial. In flooding based time synchronization protocols, current time information of a reference node is periodically flooded into the network. Sensor nodes collect the time information of the reference node and perform least-squares regression in order to estimate the reference time. However, least-squares regression exhibits a poor performance since sensor nodes far away from the reference node collect the time information with large deviations. Due to this fact, the slopes of their least-squares line exhibit large errors and instabilities. As a consequence, the reference time estimates of these nodes also exhibit large errors.This paper proposes a new slope estimation strategy for linear regression to be used by flooding based time synchronization protocols. The proposed method, namely Pairwise Slope With Minimum Variance (PSMV), calculates the slope of the estimated regression line by considering the pairwise slope between the earliest and the most recently collected data points. The PSMV slope is less affected by the large errors on the received data, i.e. it is more stable, and it is more computationally efficient when compared to the slope of the least-squares line. We incorporated PSMV into two flooding based time synchronization protocols, namely Flooding Time Synchronization Protocol (FTSP) and PulseSync. Experimental results collected from a testbed setup including 20 sensor nodes show that PSMV strategy improves the performance of FTSP by a factor of 4 and preserves the performance of PulseSync in terms of synchronization error with 40% less CPU overhead for linear regression. Our simulations show that these results also hold for networks with larger diameters and densities.  相似文献   
2.
Together with the increase in electronic circuit complexity, the design and optimization processes have to be automated with high accuracy. Predicting and improving the design quality in terms of performance, robustness and cost is the central concern of electronic design automation. Generally, optimization is a very difficult and time consuming task including many conflicting criteria and a wide range of design parameters. Particle swarm optimization (PSO) was introduced as an efficient method for exploring the search space and handling constrained optimization problems. In this work, PSO has been utilized for accommodating required functionalities and performance specifications considering optimal sizing of analog integrated circuits with high optimization ability in short computational time. PSO based design results are verified with SPICE simulations and compared to previous studies.  相似文献   
3.
4.
5.
6.
In this study, manganese ferrite (MnFe2O4) nanoparticles were produced through flame spray pyrolysis (FSP). To investigate the effects of heat treatment, the nanoparticles were annealed between 400 and 650°C for 4 h in air in a comparative manner. The structural, chemical, morphological, and magnetic properties of the nanoparticles were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), dynamic light scattering (DLS), and vibrating sample magnetometry (VSM), respectively. The XRD results showed that the nanoparticles synthesized by the FSP method exhibited the MnFe2O4 spinel ferrite structure. The annealing process led to the decomposition of MnFe2O4 into various phases. According to the morphological analysis, the as-synthesized particles were hemispherical–cubic in shape and had an average particle size of less than 100 nm. In addition, the chemical bond structures of the nanoparticles were confirmed in detail by XPS elemental analysis. The highest saturation magnetization was recorded as 33.50 emu/g for the as-produced nanoparticles. The saturation magnetization of the nanoparticles decreased with increasing annealing temperature, while coercivity increased.  相似文献   
7.
Virgin olive oils (VOOs) obtained from olives grown in different regions of Turkey under changing climatic conditions sometimes show different sensory and chemical properties. This study was planned to determine whether these deviations are due to climatic changes or not. For this purpose, five different olive varieties (Ayvalık, Memecik, Gemlik, Nizip Yağlık, Kilis Yağlık) of commercial importance were harvested from the provinces/districts (four different region) where cultivation is intense during the 2017/2018–2020/2021 harvest years. Every year, olive samples were collected from 3 orchards from 13 provinces/districts. One hundred and fifty-six samples were subjected to the purity, quality and sensory analysis. Basic climatic values (average, minimum and maximum temperature, humidity and precipitation) were examined for four consecutive years. All of the examined olive oil samples were determined within the legal limits in terms of fatty acid composition and fatty acid ethyl ester values. However, delta-7-stigmastenol value from the sterol composition was found to be above 0.5% in some samples in all the years studied (total 21 samples). Delta-7-stigmastenol values of olive oil samples varied between 0.16% and 1.14%. Multiple linear regression analysis was applied using a genetic algorithm-based inverse least squares method to determine whether there is a relationship between climate data and delta-7-stigmastenol values. According to this result, it has been determined that the delta-7-stigmastenol value is high when the annual average relative humidity is low and the annual average temperature is high. There is an urgent need to make forward-looking plans due to climate change.  相似文献   
8.
The design and the development of novel scaffold materials for tissue engineering have attracted much interest in recent years. Especially, the prepared nanofibrillar scaffold materials from biocompatible and biodegradable polymers by electrospinning are promising materials to be used in biomedical applications. In this study, we propose to produce low‐cost and cell‐friendly bacterial electrospun PHB polymeric scaffolds by using Alcaligenes eutrophus DSM 545 strain to PHB production. The produced PHB was characterized by Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Nanofibrous scaffolds were fabricated via electrospinning method that has a fiber diameter approximately 700–800 nm. To investigate cell attachment, cell growth, and antioxidant enzyme activity on positively and negatively charged PHB scaffold, PHB surface was modified by plasma polymerization technique using polyethylene glycol (PEG) and ethylenediamine (EDA). According to the results of superoxide dismutase (SOD) activity study, PEG‐modified nanofibrillar scaffolds indicated more cellular resistance against oxidative stress compared to the EDA modification. As can be seen in cell proliferation results, EDA modification enhanced the cell proliferation more than PEG modification, while PEG modification is better as compared with nonmodified scaffolds. In general, through plasma polymerization technique, surface modified nanofibrillar structures are effective substrates for cell attachment and outgrowth. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
9.
This experimental study investigates the low-speed impact behavior of adhesively bonded similar (Al–Al, St–St) and dissimilar (Al–St, St–Al) plates. The after-impact geometries of the front and back faces of the bonded plates, which were visualized by measuring the displacements, were in good agreement with the simulated surface geometries obtained by using explicit finite element method. The plate stiffness was affective on the deflections of the bonded plates; thus, the bonded Al–Al plates exhibited maximum deflections, contact durations, and minimal contact force levels, whereas the bonded St–St plates had minimum deflections, contact durations, and maximum contact force levels. As the impact energy is increased, the impact forces, durations, and deflections increased naturally; however, the impact force-time histories were not affected evidently. The bonded Al–Al plates can dissipate the impact energy more effectively than the bonded St–St plates. The experimental and simulated contact force-time histories were generally in good agreement. Based on the cross-section photographs of the damaged impact regions the bonded Al–Al plates with low stiffness can deform plastically and dissipate most of the impact energy, and the adhesive layer remains compatible with the deformation of the plates. The interfacial fractures appear along the back plate–adhesive interface for the low impact energy but along both front and back plate–adhesive interfaces and cracks propagated to the back interface to lower interface through the adhesive thickness near the boundaries of the impactor trace. The bonded St–St plates behave more rigid, transmit the impact energy directly to the adhesive layer and the high impact force distributions result severe fractures not only interfacially but also through the adhesive thickness. The color transformations, which are indications of fracture formation and propagation speed in some way, were observed around the adhesive fractures. Although the bonded St–Al and Al–St plates had a fracture mechanism similar to those of the bonded Al–Al plates but the color transformation near the fractures and the crack opening displacement levels were more evident. The existence of a stiffer plate affects considerably the damage formation in the adhesive layer and in the plates, whereas the less stiff plates can dissipate the impact energy by deforming plastically and the adhesive layer experiences less local damages.  相似文献   
10.
ABSTRACT

Supercapacitor properties of rGO, CuO, PEDOT and rGO/CuO at [rGO]o/[CuO]o?=?1:1; 1:1.5; 1:2 and rGO/CuO/PEDOT nanocomposite at [rGO]o/[CuO]o/[EDOT]o?=?1:1:1; 1:1:3; 1:1:5 were investigated using chemical reduction of GO and in-situ polymerisation process. SEM-EDX, HRTEM, BET surface area analysis confirm the nanocomposite formations. Nanocomposite materials are also analysed through FTIR-ATR, Raman, TGA-DTA, GCD, CV and EIS. The highest specific capacitance of C sp?=?156.7 F/g at 2?mV/s is determined as rGO/CuO/PEDOT at [rGO]o/[CuO]o/[EDOT]o?=?1:1:5. In addition, two-electrode supercapacitor device for rGO/CuO/PEDOT at [rGO]o/[CuO]o/[EDOT]o?=?1:1:5 are found to provide a maximum specific energy (E?=?14.15 Wh/kg at 20?mA) and specific power (P?=?24730 W/kg at 50?mA), electrical serial resistance (ESR?=?13.33 Ω) with good capacity retention after 3000 cycles. An equivalent circuit model of LR1(CR2)(QR3) is proposed to interpret the EIS data. The supercapacitor performance of the rGO/CuO/PEDOT nanocomposite electrode indicates the synergistic effect of hybrid supercapacitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号