首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12196篇
  免费   1021篇
  国内免费   114篇
电工技术   226篇
综合类   52篇
化学工业   3241篇
金属工艺   277篇
机械仪表   532篇
建筑科学   485篇
矿业工程   23篇
能源动力   724篇
轻工业   1169篇
水利工程   223篇
石油天然气   169篇
武器工业   6篇
无线电   1339篇
一般工业技术   2095篇
冶金工业   359篇
原子能技术   108篇
自动化技术   2303篇
  2024年   39篇
  2023年   229篇
  2022年   426篇
  2021年   769篇
  2020年   714篇
  2019年   845篇
  2018年   974篇
  2017年   894篇
  2016年   874篇
  2015年   520篇
  2014年   891篇
  2013年   1328篇
  2012年   823篇
  2011年   936篇
  2010年   600篇
  2009年   519篇
  2008年   341篇
  2007年   244篇
  2006年   201篇
  2005年   146篇
  2004年   129篇
  2003年   85篇
  2002年   70篇
  2001年   48篇
  2000年   37篇
  1999年   40篇
  1998年   61篇
  1997年   52篇
  1996年   53篇
  1995年   43篇
  1994年   24篇
  1993年   34篇
  1992年   24篇
  1991年   34篇
  1990年   27篇
  1989年   24篇
  1988年   23篇
  1987年   23篇
  1986年   21篇
  1985年   20篇
  1984年   24篇
  1983年   15篇
  1982年   11篇
  1979年   10篇
  1976年   8篇
  1975年   9篇
  1973年   10篇
  1971年   6篇
  1970年   11篇
  1969年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Journal of Materials Science - Chitosan is one of the natural cationic polymers with unique properties such as non-toxicity, biodegradability, biocompatibility, environmentally friendly that has...  相似文献   
2.
Wireless Networks - In order to satisfy the delay requirements of telecommunication systems, in this paper, we present a cooperative network with the short packet transmission in the Rayleigh...  相似文献   
3.
4.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
5.
The onset of hybrid alumina-based composites, which combines two or more nano-particles within the alumina matrix has already shown promising improvements in the matrix material. However, variations in mechanical properties including the optimum compositions that give improved properties faced with the development of alumina-based composites require further studies to understand the underlying mechanisms and synergistic effects of the nano-particle additions on the alumina matrix. In the current study, the structure and properties of Al?O?-graphene (0.5 wt%) and Al?O?–ZrO? (4 wt% and 10 wt%) composites fabricated via hot-pressing was studied as a baseline for multiple combinations. Even though the addition of 10 wt%ZrO? resulted in a 23% reduction in the grain size of the alumina matrix, the 4 wt%ZrO? addition resulted in a 14% increase in grain size as compared to the parent alumina matrix. X-ray diffraction analysis revealed that there was approximately 85% monoclinic (m-ZrO2) vs. 15% tetragonal (t-ZrO2) crystal structures in the A4ZrO? sample whilst the A10ZrO? had approximately 93% m-ZrO2 vs. 7% t-ZrO2. The high-volume fraction of the monoclinic crystal structures in the A10ZrO? accounts for the induced microcracks in the sample since the transition from the ductile-tetragonal to brittle-monoclinic is associated with the exertion of compressive stresses on the alumina matrix by the associated elastic volume expansion of m-ZrO2. Also, the addition of 0.5 wt%graphene resulted in about 37% reduction in the grain size of the alumina matrix, and approximately 10% increase in hardness as a result of the distribution of graphene along the grain boundaries of the parent alumina matrix, which restricts grain coalescence and growth during processing. Furthermore, an increase up to 115% and 164% were observed in the fracture toughness (KIC) with the inclusion of 0.5 wt%graphene and 10 wt%ZrO? respectively, which was primarily ascribed to the fine-grained microstructures and toughening mechanisms of the intergranular graphene and ZrO? particles.  相似文献   
6.
In the present study, spinel structure CoFe2O4 nanoparticles were successfully synthesized by the sol-gel auto-combustion technique. The effect of apple cider vinegar (ACV) addition as an organic biocompatible agent on the size, morphology, and magnetic properties of CoFe2O4 nanoparticles was investigated in detail. The phase evolution, particle size, and lattice parameter changes of the synthesized phase have been estimated by using Rietveld structure refinement analysis of X-ray powder diffraction data. Also, Fourier transform infrared spectra (FT-IR) of the samples verified the presence of two expected bands correspond to tetrahedral and octahedral metal-oxygen complexes within the spinel structure. Furthermore, microstructural observations revealed that ultrafine particles have a semi-spherical morphology. It was shown that the particles size decreased from ~45 to ~17 nm with an increase in the amount of ACV. Magnetic properties were carried out by vibrating sample magnetometer (VSM) at room temperature. Both the saturation magnetization (Ms) and coercivity (Hc) were found to be significantly dependent on the crystallite size and the amount of ACV.  相似文献   
7.

Considering the internet of things (IoT), end nodes such as wireless sensor network, RFID and embedded systems are used in many applications. These end nodes are known as resource-constrained devices in the IoT network. These devices have limitations such as computing and communication power, memory capacity and power. Key pre-distribution schemes (KPSs) have been introduced as a lightweight solution to key distribution in these devices. Key pre-distribution is a special type of key agreement that aims to select keys called session keys in order to establish secure communication between devices. One of these design types is the using of combinatorial designs in key pre-distribution, which is a deterministic scheme in key pre-distribution and has been considered in recent years. In this paper, by introducing a key pre-distribution scheme of this type, we stated that the model introduced in the two benchmarks of KPSs comparability had full connectivity and scalability among the designs introduced in recent years. Also, in recent years, among the combinatorial design-based key pre-distribution schemes, in order to increase resiliency as another criterion for comparing KPSs, attempts were made to include changes in combinatorial designs or they combine them with random key pre-distribution schemes and hybrid schemes were introduced that would significantly reduce the design connectivity. In this paper, using theoretical analysis and maintaining full connectivity, we showed that the strength of the proposed design was better than the similar designs while maintaining higher scalability.

  相似文献   
8.
9.
2,6-Bis(5-amino-1H-benzimidazol-2-yl)pyridine was prepared and characterized by Fourier transform infrared spectroscopy, elemental analysis, 1H-NMR, and 13C-NMR spectroscopic methods. Then a new poly(benzimidazole-amide) was synthesized by polymerization of the corresponding diamine and isophthalic acid. The obtained poly(benzimidazole-amide) exhibited good yield and high thermal stability. Due to the existence of benzimidazole moieties in polymer’s structure, it has the tendency to form complexes with metal ions. So, a new poly(benzimidazole-amide)/Co nanocomposite was prepared. Morphological studies revealed that metal nanoparticles were dispersed in the polymer matrix without any aggregation. poly(benzimidazole-amide)/Co nanocomposite was used as a catalyst in the oxidation of ethyl benzene to acetophenone with tert-butyl hydroperoxide.  相似文献   
10.
Microbial fuel cell (MFC) is a promising technology for simultaneous wastewater treatment and energy harvesting. The properties of the anode material play a critical role in the performance of the MFC. In this study, graphene oxide was prepared by a modified hummer's method. A thin layer of graphene oxide was incorporated on the carbon brush using an electrophoretic technique. The deoxygenated graphene oxide formed on the surface of the carbon brush (RGO-CB) was investigated as a bio-anode in MFC operated with real wastewater. The performance of the MFC using the RGO-CB was compared with that using plain carbon brush anode (PCB). Results showed that electrophoretic deposition of graphene oxide on the surface of carbon brush significantly enhanced the performance of the MFC, where the power density increased more than 10 times (from 33 mWm?2 to 381 mWm?2). Although the COD removal was nearly similar for the two MFCs, i.e., with PCB and RGO-CB; the columbic efficiency significantly increased in the case of RGO-CB anode. The improved performance in the case of the modified electrode was related to the role of the graphene in improving the electron transfer from the microorganism to the anode surface, as confirmed from the electrochemical impedance spectroscopy measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号