首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
化学工业   4篇
金属工艺   1篇
机械仪表   1篇
轻工业   2篇
自动化技术   7篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The Data Grid provides massive aggregated computing resources and distributed storage space to deal with data-intensive applications. Due to the limitation of available resources in the grid as well as production of large volumes of data, efficient use of the Grid resources becomes an important challenge. Data replication is a key optimization technique for reducing access latency and managing large data by storing data in a wise manner. Effective scheduling in the Grid can reduce the amount of data transferred among nodes by submitting a job to a node where most of the requested data files are available. In this paper two strategies are proposed, first a novel job scheduling strategy called Weighted Scheduling Strategy (WSS) that uses hierarchical scheduling to reduce the search time for an appropriate computing node. It considers the number of jobs waiting in a queue, the location of the required data for the job and the computing capacity of the sites Second, a dynamic data replication strategy, called Enhanced Dynamic Hierarchical Replication (EDHR) that improves file access time. This strategy is an enhanced version of the Dynamic Hierarchical Replication strategy. It uses an economic model for file deletion when there is not enough space for the replica. The economic model is based on the future value of a data file. Best replica placement plays an important role for obtaining maximum benefit from replication as well as reducing storage cost and mean job execution time. So, it is considered in this paper. The proposed strategies are implemented by OptorSim, the European Data Grid simulator. Experiment results show that the proposed strategies achieve better performance by minimizing the data access time and avoiding unnecessary replication.  相似文献   
2.
In this paper, adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and partial least squares (PLS) approaches are applied to predictive control of a drying process. In the proposed approaches, the PLS analysis is used to pre-process actual data and to provide the necessary background to apply ANN and ANFIS approaches. A reasonable section of this study is assigned to the modeling with the aim at predicting the granule particle size and executing by ANFIS and ANN. ANN holds the promise of being capable of producing non-linear models, being able to work under noise conditions, and being fault tolerant to the loss of neurons or connections. Also, the ANFIS approach combines the advantages of fuzzy system and artificial neural network to design architecture and is capable of dealing with both limitation and complexity in the data set. The efficiencies of ANFIS and ANN approaches in prediction are compared and the superior approach is selected. Finally, by deploying the preferred approach, several scenarios are presented to be used in predictive control of spray drying as an accurate, fast running, and inexpensive tool. This is the first study that presents a flexible intelligent approach for predictive control of drying process by ANN, ANFIS, and PLS. The approach of this study may be easily applied to other production process.  相似文献   
3.
Data Grid is a geographically distributed environment that deals with large-scale data-intensive applications. Effective scheduling in Grid can reduce the amount of data transferred among nodes by submitting a job to a node, where most of the requested data files are available. Data replication is another key optimization technique for reducing access latency and managing large data by storing data in a wisely manner. In this paper two algorithms are proposed, first a novel job scheduling algorithm called Combined Scheduling Strategy (CSS) that uses hierarchical scheduling to reduce the search time for an appropriate computing node. It considers the number of jobs waiting in queue, the location of required data for the job and the computing capacity of sites. Second a dynamic data replication strategy, called the Modified Dynamic Hierarchical Replication Algorithm (MDHRA) that improves file access time. This strategy is an enhanced version of Dynamic Hierarchical Replication (DHR) strategy. Data replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement. MDHRA replaces replicas based on the last time the replica was requested, number of access, and size of replica. It selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. The simulation results demonstrate the proposed replication and scheduling strategies give better performance compared to the other algorithms.  相似文献   
4.
Data Grid integrates graphically distributed resources for solving data intensive scientific applications. Effective scheduling in Grid can reduce the amount of data transferred among nodes by submitting a job to a node, where most of the requested data files are available. Scheduling is a traditional problem in parallel and distributed system. However, due to special issues and goals of Grid, traditional approach is not effective in this environment any more. Therefore, it is necessary to propose methods specialized for this kind of parallel and distributed system. Another solution is to use a data replication strategy to create multiple copies of files and store them in convenient locations to shorten file access times. To utilize the above two concepts, in this paper we develop a job scheduling policy, called hierarchical job scheduling strategy (HJSS), and a dynamic data replication strategy, called advanced dynamic hierarchical replication strategy (ADHRS), to improve the data access efficiencies in a hierarchical Data Grid. HJSS uses hierarchical scheduling to reduce the search time for an appropriate computing node. It considers network characteristics, number of jobs waiting in queue, file locations, and disk read speed of storage drive at data sources. Moreover, due to the limited storage capacity, a good replica replacement algorithm is needed. We present a novel replacement strategy which deletes files in two steps when free space is not enough for the new replica: first, it deletes those files with minimum time for transferring. Second, if space is still insufficient then it considers the last time the replica was requested, number of access, size of replica and file transfer time. The simulation results show that our proposed algorithm has better performance in comparison with other algorithms in terms of job execution time, number of intercommunications, number of replications, hit ratio, computing resource usage and storage usage.  相似文献   
5.
6.
Cloud computing environment is getting more interesting as a new trend of data management. Data replication has been widely applied to improve data access in distributed systems such as Grid and Cloud. However, due to the finite storage capacity of each site, copies that are useful for future jobs can be wastefully deleted and replaced with less valuable ones. Therefore, it is considerable to have appropriate replication strategy that can dynamically store the replicas while satisfying quality of service (QoS) requirements and storage capacity constraints. In this paper, we present a dynamic replication algorithm, named hierarchical data replication strategy (HDRS). HDRS consists of the replica creation that can adaptively increase replicas based on exponential growth or decay rate, the replica placement according to the access load and labeling technique, and finally the replica replacement based on the value of file in the future. We evaluate different dynamic data replication methods using CloudSim simulation. Experiments demonstrate that HDRS can reduce response time and bandwidth usage compared with other algorithms. It means that the HDRS can determine a popular file and replicates it to the best site. This method avoids useless replications and decreases access latency by balancing the load of sites.  相似文献   
7.
Food Science and Biotechnology - This study aims to prepare fish gelatin nanofibers extracted from fish waste by using electrospinning method and its encapsulation with fucoxanthin extracted from...  相似文献   
8.
Herein, enhancement of dye‐sensitized solar cell (DSC) performance is reported by combining the merits of the dye loading of TiO2 nanoparticles and light scattering, straight carrier transport path, and efficient electron collection efficiency of TiO2 cubes. We fabricate DSC devices with various arrangement styles and compositions of the electrodes in the forms of monolayer and double layer films. For this purpose, the solvothermal synthesized TiO2 cubic particles (100‐600 nm) are employed as the scattering layer, whereas TiO2 nanoparticles (15‐30 nm) synthesized via a combination of solvothermal and sol‐gel routes are used as the active layer of devices. We improve the photovoltaic characteristics of DSCs by two mechanisms. First, the light harvesting of DSC devices made of nanoparticles is improved by controlling the thickness of monolayer films, reaching the highest efficiency of 7.0%. Second, the light scattering and electron collection efficiency are enhanced by controlling the composition of double layer films composed of mixtures of TiO2 nanoparticles and cubes, obtaining the maximum efficiency of 8.21%. The enhancements are attributed to balance between charge transfer resistance and charge recombination of photo‐generated electrons as well as dye loading and light scattering.  相似文献   
9.
The separations of ethylene/ethane and propylene/propane using polysulfone‐silica nanocomposite membranes were studied. Silica nanoparticles were prepared via sol‐gel method and the membranes by phase inversion. Characterization by Fourier transform spectroscopy and scanning electron microscopy indicated a good distribution of silica nanoparticles in the polymer matrix and also a good compatibility between the two phases. The performances of the prepared membranes in ethylene‐ethane and propylene‐propane separation were evaluated. The results showed the increments in gas permeability and selectivity by silica. Higher silica contents increased the solubility coefficient and reduced the diffusion coefficient of gases. The plasticization pressure of polysulfone was increased by incorporating the silica nanoparticles in polymer.  相似文献   
10.
The application of antireflective coatings to the glass covers of solar thermal collectors, allows increasing the efficiency of the whole system. The work presented here describes the room temperature synthesis of highly transparent and hydrophobic silica coatings using tetraethylorthosilicate (TEOS) as a precursor and polydimethylsiloxane (PDMS) as a hydrophobic modifying agent via a simple dip coating technique. Then, the films were characterized by measuring contact angle and optical transparency, Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) measurements. A new two-step method by double layer of acidic and basic sols was employed. Results showed the maximum transmittance of the antireflective solar glass with double layer coating is about 95.02% at 565 nm wavelength, which is about 4% higher than the substrate glass. The durability of the materials used in solar systems is a key point since they should keep their initial properties during the operational lifetime. In this work, the stability of the optical properties of the films after one year at room temperature in an environment has been achieved, thanks to the application of a hydrophobic treatment and two step-catalyzed sols to the coating. The addition of PDMS to the silica sols improved the hydrophobicity of the coating, and prevented to some extent the coating from cracking which occurred in a pure inorganic thick antireflective coating. It was observed that the obtained silica films become hydrophobic with the introduction of the hydrophobic organic group and static water contact angle (97°) was obtained for the silica film prepared with double layer of acidic/basic coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号