首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学工业   4篇
轻工业   1篇
  2022年   1篇
  2019年   1篇
  2015年   1篇
  2012年   1篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
A novel trilayered controlled‐release nitrogen, phosphorous, and potassium (NPK) fertilizer hydrogel was prepared by dipping the NPK fertilizer granules sequentially in 7% w v?1 poly(vinyl alcohol) (PVA) and 2% w v?1 chitosan (CS) solutions and then cross‐linking the CS layer (cross‐CS) via glutaraldehyde vapor deposition. Different NPK fertilizer hydrogels were then synthesized by inverse suspension polymerization of the dried PVA/cross‐CS bilayer‐coated fertilizer granules in various molar ratios of acrylamide (AM) and acrylic acid (AA) monomers, and polymerization with varying molar ratios of ammonium persulfate, N,N,N′,N′‐tetramethylethylenediamine and N,N′‐methylenebisacrylamide (N‐MBA). The water dissolution time of the obtained PVA/cross‐CS/poly (AA‐co‐AM) trilayer‐coated NPK fertilizer hydrogel granules was prolonged, while the water absorbency increased with increasing AA contents, and decreased with increasing N‐MBA contents in the outer poly(AA‐co‐AM) coating. The optimal trilayer‐coated NPK fertilizer hydrogel obtained released 84 ± 18, 63 ± 12, and 36 ± 15% of the N, P, and K nutrients, respectively, after a 30‐day immersion in water. The release phenomena of the N, P, and K nutrients of the fertilizer hydrogel obeyed both the Korsmeyer‐Peppas and Ritger‐Peppas models with a pseudo‐Fickian diffusion mechanism. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41249.  相似文献   
2.
A random terpolymer of L ‐lactide (LL), ?‐caprolactone (CL) and glycolide (G) has been synthesized in bulk at 130 °C using stannous octoate as the coordination–insertion initiator. The terpolymer, poly(LL‐ran‐CL‐ran‐G), has been characterized by a combination of analytical techniques: GPC, 1H NMR, 13C NMR, DSC and TG. Molecular weight characterization by GPC shows a unimodal molecular weight distribution with values of M n = 1.01 × 105 g mol?1 and M w / M n = 2.17. Compositional and microstructural analysis by 1H NMR and 13C NMR, respectively, reveal a terpolymer composition of LL:CL:G = 74:15:11 (mol%) with a chain microstructure consistent with random monomer sequencing. This latter view is supported by the terpolymer temperature transitions (Tg and Tm) from DSC and the thermal decomposition profile from TG. The results and, in particular, the conclusion that it is a random rather than a statistical terpolymer are discussed in the light of current theories regarding the mechanism of this type of polymerization. © 2001 Society of Chemical Industry  相似文献   
3.
Linear (1‐arm) and star‐shaped (4‐, 6‐, and 16‐arm) poly(D,L ‐lactide)s (PDLLs) were synthesized by ring‐opening polymerization in bulk of D,L ‐lactide monomer. Hydroxyl end‐group compounds and stannous octoate were used as the initiator and catalyst, respectively. The intrinsic viscosity and glass transition temperature (Tg) of the PDLLs decreased steadily as the branch arm number increased for similar molecular weights. However, the intrinsic viscosity and Tg values of the linear PDLL were less than the star‐shaped PDLL for similar each PDLL arm lengths. Ibuprofen, a poorly water soluble model drug was entrapped in the PDLL microspheres. All drug‐loaded PDLL microspheres were prepared by the oil‐in‐water emulsion solvent evaporation method, were spherical in shape, and had a smooth surface with fine dispersibility. In vitro drug release behaviors indicated that the drug release from the microspheres with higher branch arm number was faster than from those with lower branch arm number. Moreover, the drug release from the star‐shaped PDLL microspheres was slower than that of the linear PDLL microspheres for similar PDLL arm lengths. The drug release behavior could be adjusted through both the branch arm number and arm length of PDLL. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
4.
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号