首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学工业   1篇
轻工业   20篇
  2024年   1篇
  2022年   1篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2005年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
This study investigated the fucoxanthin content of New Zealand (NZ) Undaria pinnatifida harvested from two locations in the Marlborough Sounds, New Zealand across its growing season. Fucoxanthin content and antioxidant properties of processed New Zealand U. pinnatifida and commercial wakame from Japan and Korea were further compared. Results showed that U. pinnatifida harvested from Port Underwood had higher fucoxanthin content in the blade compared to Pelorus Sound. The sporophyll also contained a significant amount of fucoxanthin throughout the harvest season, although lower than in the blade. Two antioxidant measurement methods, DPPH and CUPRAC, were utilised to measure antioxidant activities. Processed NZ U. pinnatifida had a lower fucoxanthin content and antioxidant activity than freeze-dried Undaria. Fucoxanthin content and antioxidant activities of NZ processed U. pinnatifida were not significantly different from other commercial samples from Japan and Korea. In conclusion, U. pinnatifida in New Zealand has a great potential to be a food and nutraceutical resource.  相似文献   
2.
3.
A study was conducted to investigate the organochlorine and pyrethroid pesticide residues in fruit and vegetables from market in Malaysia. Gas chromatography with electron capture detector (GC-ECD) was used to determine the concentrations of pesticide residues and SAX/PSA was used as a clean-up. Cypermethrin was detected in 38 of 302 vegetable samples with a mean value of 0.47 mg/kg. The mean value of cypermethrin for tomato, chinese parsley, chinese celery, chilli, brinjal, french beans, green mustard and capsicum ranged from 0.16 to 1.48 mg/kg. The mean values for all samples were below the maximum residue limits (MRLs) allowed by the Malaysian Food Regulations except for brinjal. None of the 206 fruit samples tested showed any pesticide residue.  相似文献   
4.
The influence of headspace solid-phase microextraction (HS-SPME) variables, namely, sample concentration, salt concentration and sample amount, on the equilibrium headspace analysis of the main volatile flavor compounds released from soursop was investigated. A total of 35 volatile compounds, comprising 19 esters, six alcohols, three terpenes, two acids, two aromatics, two ketones and an aldehyde, were identified. The results indicated that all response-surface models were significantly (p < 0.05) fitted for 10 target volatile flavor compounds. The results further indicated that more than 65% of the variation in the equilibrium headspace concentrations of target volatile flavor compounds could be explained by the final reduced models, with high R2 values ranging from 0.658 to 0.944. Multiple optimization results showed that extraction using a 76.6% (w/w) sample concentration, 20.2% (w/w) salt and 8.2 g of blended soursop pulp was predicted to provide the highest overall equilibrium headspace concentration for the target soursop volatile flavor compounds.  相似文献   
5.
Chemical Properties of Virgin Coconut Oil   总被引:1,自引:0,他引:1  
A study on the commercial virgin coconut oil (VCO) available in the Malaysian and Indonesian market was conducted. The paper reported the chemical characteristics and fatty acid composition of VCO. There was no significant difference in lauric acid content (46.64–48.03%) among VCO samples. The major triacylglycerols obtained for the oils were LaLaLa, LaLaM, CLaLa, LaMM and CCLa (La, lauric; C, capric; M, myristic). Iodine value ranged from 4.47 to 8.55, indicative of only few unsaturated bond presence. Saponification value ranged from 250.07 to 260.67 mg KOH/g oil. The low peroxide value (0.21–0.57 mequiv oxygen/kg) signified its high oxidative stability, while anisidine value ranged from 0.16 to 0.19. Free fatty acid content of 0.15–0.25 was fairly low, showing that VCO samples were of good quality. All chemical compositions were within the limit of Codex standard for edible coconut oil. Total phenolic contents of VCO samples (7.78–29.18 mg GAE/100 g oil) were significantly higher than refined, bleached and deodorized (RBD) coconut oil (6.14 mg GAE/100 g oil). These results suggest that VCO is as good as RBD coconut oil in chemical properties with the added benefit of being higher in phenolic content.  相似文献   
6.
Headspace solid-phase microextraction (HS-SPME) gas chromatography was used to analyze target flavor compounds in orange beverage emulsion. The effects of SPME fiber (PDMS 100 μm, CAR/PDMS 75 μm, PDMS/DVB 65 μm and DVB/CAR/PDMS 50/30 μm), adsorption temperature (25–45 °C), adsorption time (5–25 min), sample concentration (1–100%), sample amount (5–12.5 g), pH (2.5–9.5), salt type (K2CO3, Na2CO3, NaCl and Na2SO4), salt amounts (0–30%) and stirring mode were studied to develop HS-SPME condition for obtaining the highest extraction efficiency and aroma recovery. For the head space volatile extraction, the optimum conditions were: CAR/PDMS fiber, adsorption at 45 °C for 15 min, 5 g of diluted beverage emulsion (1:100), 15% (w/w) of NaCl with stirring and original pH 4. The main volatile flavor compounds were: limonene, 94.9%; myrcene, 1.2%; ethyl butyrate, 1.1%; γ-terpinene, 0.41%; linalool, 0.36%; 3-carene, 0.16%; decanal, 0.12%; ethyl acetate, 0.1%; 1-octanol, 0.06%; geranial, 0.05%; β-pinene, 0.04%; octanal, 0.03%; α-pinene, 0.03%; and neral, 0.03%. The linearity was very good in the considered concentration ranges (R2 ? 0.97). Average recoveries ranged from 88.3% to 121.7% and showed good accuracy for the proposed analytical method. Average relative standard deviation (RSD) for five replicate analyses was found to be less than 14%. The limit of detection (LOD) ranged from 0.06 to 2.27 mg/l for all volatile flavor compounds and confirmed the feasibility of the HS-SPME technique for headspace analysis of orange beverage emulsion. The method was successfully applied for headspace analysis of five commercial orange beverage emulsions.  相似文献   
7.
The present work was conducted to investigate the influence of main emulsion components, namely Arabic gum (7–13% w/w), xanthan gum (0.1–0.3% w/w) and orange oil (6–10% w/w) contents on physical stability, viscosity, cloudiness and conductivity of orange beverage emulsion. In this study, 20 orange beverage emulsions were established based on a three-factor central composite design (CCD) involving 8 factorial points, 6 axial points and 6 center points. The main objective of the present study was to determine an optimal concentration level of main emulsion components leading to an optimum orange beverage emulsion with desirable physicochemical properties. In general, all response surface models were significantly (p<0.05) fitted for describing the variability of physical stability, viscosity, conductivity and cloudiness as a nonlinear function of the content of main emulsion components. More than 84% of the variation of physicochemical properties of orange beverage emulsion could be explained as a function of the content of the main beverage emulsion components. In general, the orange oil content appeared to be the most significant (p<0.05) factor influencing all emulsion characteristics studied except for conductivity. From the optimization procedure, the overall optimal region leading to the desirable orange beverage emulsion was predicted to be achieved by the combined level of 13% (w/w) Arabic gum, 0.22% (w/w) xanthan gum and 10% (w/w) orange oil.  相似文献   
8.
Headspace solid-phase microextraction (HS-SPME) coupled to comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) was applied for equilibrium headspace analysis of Malaysian soursop (Annona muricata) volatile flavor compounds. A two-level fractional factorial design (25-1) was used to determine the effect of SPME variables, namely, SPME fibers, adsorption temperature, extraction time, amount of salt, sample amount and sample concentration on the extraction efficiency of volatile flavor compounds. A total of 37 volatile compounds were identified, comprising 21 esters, 6 alcohols, 3 terpenes, 2 acids, 2 ketones, 2 aldehydes and an aromatic with different hydrophobicities (log P) ranging between −0.14 and 4.83. Extraction using 10 g of diluted (5% w/w) blended soursop pulp with CAR/PDMS fiber at 25 °C for 30 min and 30% (w/w) of NaCl under stirring mode resulted in the highest extraction efficiency of volatile flavor compounds. The principal component analysis score discriminated the influence of SPME variables on the equilibrium headspace concentration of target volatile compounds.  相似文献   
9.
A study on the production of spray‐dried pandan (Pandanus amaryllifolius) powder was conducted and optimised using response surface methodology (RSM). Parameters investigated include inlet temperature (170–200 °C) and feed rate (6–12 rpm), with a preset outlet temperature of 90 °C. The estimated regression coefficients (R2) for the physicochemical characteristic and sensory responses of pandan powder were ≥0.800, except for overall acceptability. Some mathematical models could be developed with confidence based on the results from all responses. An optimum drying process for spray drying represents conditions that would yield acceptably high colour index (such as L value, a value and b value), low moisture content, low water activity (aw), high solubility and high colour, flavour, odour and overall acceptability for sensory responses. Optimum conditions of 170 °C inlet temperature and 6 rpm feed rate, with a constant outlet temperature of 90 °C, were established for producing spray‐dried pandan powder as an edible colouring and flavouring powder. Copyright © 2005 Society of Chemical Industry  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号