首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   1篇
轻工业   1篇
  2020年   2篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
2.
Change in mechanical property of a degrading adhesive is critical to its performance. However, characterization of degradation behavior is often limited to tracking its mass loss. Four-armed poly(ethylene glycol) end modified with dopamine (PEG-DA) was used as a model bioadhesive to correlate its change in mass with change in mechanical property. Shear modulus (G) was calculated based on the mass and average molecular weight between crosslinks () of PEG-DA, while the storage modulus (G′) was determined by oscillatory rheometry. G decreased slowly within the first week of degradation (4% reduction by week 2), while G′ decreased by 60% during the same period. This large discrepancy is due to the partially disconnected and elastically ineffective PEG polymer, which is trapped within the adhesive network. This resulted in minimal mass change and higher calculated G value during the earlier time points. Therefore, tracking mass loss profile alone is inadequate to completely describe the degradation behavior of an adhesive. Additionally, PEG-DA was coated onto magnetoelastic (ME) sensors, and the change in the resonance amplitude of the sensor corresponded well with dry mass loss of PEG-DA. ME sensing provides a nondestructive method to track the mass loss of the coated adhesive. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48451.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号