首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   3篇
化学工业   5篇
金属工艺   2篇
机械仪表   2篇
建筑科学   1篇
能源动力   18篇
轻工业   3篇
无线电   2篇
一般工业技术   10篇
冶金工业   1篇
自动化技术   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   6篇
  2008年   2篇
  2007年   2篇
  2003年   2篇
  1996年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
The present study attempts quantitative determination of changes in the morphological surface features viz. fractal dimension, lower and upper cut off length scale through Power Spectral Density analysis prior to and after irradiation of 100 KeV Ar+ ion beam at incidence angles of 0°, 40° and 60° on ZnO thin films. All the unirradiated and irradiated samples are subjected to photoelectrochemical characterization and a correlation between photoelectrochemical performance and morphological parameters is established. Sample irradiated at 40° angle at the fluence of 5 × 1016 ions/cm2 is found to possess maximum fractal dimension of 2.72, lower and upper cut off length scale of 3.16 nm and 63.00 nm respectively. This sample exhibits maximum photocurrent density of 3.19 mA/cm2 and applied bias photon-to-current efficiency of 1.12% at 1.23 V/RHE. Hydrogen gas collected for duration of 1 h for the same sample was ~4.83 mLcm?2.  相似文献   
2.
3.
This paper presents an alternative approach to formulation of soil classification by means of a promising variant of genetic programming (GP), namely multi expression programming (MEP). Properties of soil, namely plastic limit, liquid limit, color of soil, percentages of gravel, sand, and fine-grained particles are used as input variables to predict the classification of soils. The models are developed using a reliable database obtained from the previously published literature. The results demonstrate that the MEP-based formulas are able to predict the target values to high degree of accuracy. The MEP-based formulation results are found to be more accurate compared with numerical and analytical results obtained by other researchers.  相似文献   
4.
A visible light active and stable photoelectrode has been developed by depositing a passivating layer of ZnS QDs on CdS QDs sensitized hematite photoelectrode (Hematite‐CdS/ZnS) for PEC generation of hydrogen. Photoelectrochemical properties, in terms of stability and efficiency, have been investigated on the various hematite photoelectrodes sensitized with CdS QDs and CdS/ZnS QDs by varying number of SILAR cycles. I–V characteristics show that two layers of ZnS QDs deposited over three layers of CdS could enhance PEC response of hematite and efficiency by a factor of 3 and 11 respectively. Chronoamperometry measurement ensures that after adding a layer of ZnS QDs, CdS sensitized hematite film turns out to be a stable photoelectrode in the electrolyte. Prepared photoelectrodes have been characterized by XRD, SEM, HRTEM and UV–Vis spectrophotometer for various structural, morphological and optical properties to analyze PEC results. Mott–Schottky analysis and incident photon to current conversion efficiency (IPCE) measurements of sensitized hematite photoelectrode supported the improved PEC response of CdS/ZnS QDs sensitized hematite thin films. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Nanostructured semiconductor thin films of Zn-Fe2O3 modified with underlying layer of Fe-TiO2 have been synthesized and studied as photoelectrode in photoelectrochemical (PEC) cell for generation of hydrogen through water splitting. The Zn-Fe2O3 thin film photoelectrodes were designed for best performance by tailoring thickness of the Fe-TiO2 film. A maximum photocurrent density of 748 μA/cm2 at 0.95 V/SCE and solar to hydrogen conversion efficiency of 0.47% was observed for 0.89 μm thick modified photoelectrode in 1 M NaOH as electrolyte and under 1.5 AM solar simulator. To analyse the PEC results the films were characterized for various physical and semiconducting properties using XRD, SEM, EDX and UV–Visible spectrophotometer. Zn-Fe2O3 thin films modified with Fe-TiO2 exhibited improved visible light absorption. A noticeable change in surface morphology of the modified Zn-Fe2O3 film was observed as compared to the pristine Zn-Fe2O3 film. Flatband potential values calculated from Mott–Schottky curves also supported the PEC response.  相似文献   
7.
The physical and mechanical properties of milkweed composites based on different loads of milkweed flour and maleic anhydride grafted polypropylene (MAPP) using polypropylene as matrix are investigated in this study. There levels of milkweed fibers (30, 40, and 50 wt.%), one level of mixed milkweed flour (20:20 wt.% fiber:bark), and two levels of MAPP (4 and 6 wt.%) were used to prepare natural fiber-reinforced composites. Physical and mechanical properties including flexural, tension, impact, and thickness swelling were evaluated according to ASTM standards. The result demonstrated that addition of milkweed flour fluctuates mechanical properties of reinforced composite. However, the optimum load of milkweed flour was different in each test. Generally, 40 wt.% mixed flour composite in comparison with 40 wt.% milkweed composite showed lower mechanical results and higher thickness swelling. MAPP as a coupling agent improved physical and mechanical properties of milkweed-filled composites in most properties. The results of this study depicted positive effects of lignocellulose fibers and coupling gent and also negative effect of bark flour as a function of lower cellulose and higher extractive contents on physical and mechanical properties of milkweed-reinforced composites.  相似文献   
8.
Fire losses due to cable fire in thermal power plants and industrial units are mounting. Fire in cable galleries is caused either by an external source or internal heating due to overloading or poor cable insulation. Most of the power cables are laid in groups that run on trays. In the event of fire, cable insulation melts and cable conductors come into contact and generate sparks. The resulting flame spreads through cables and engulf other groups of cables. This leads to damage in control rooms and distribution units that causes power generation disruption and plant shutdown.To minimize the damage and system disturbance due to fire, a new system for cable installation has been developed. The system involves construction of fire stop walls using fire-resistant cavity blocks, heat-resistant wool, and fire-resistant sealant.  相似文献   
9.
This paper proposes a new approach for the formulation of compressive strength of carbon fiber reinforced plastic (CFRP) confined concrete cylinders using a promising variant of genetic programming (GP) namely, linear genetic programming (LGP). The LGP-based models are constructed using two different sets of input data. The first set of inputs comprises diameter of concrete cylinder, unconfined concrete strength, tensile strength of CFRP laminate and total thickness of utilized CFRP layers. The second set includes unconfined concrete strength and ultimate confinement pressure which are the most widely used parameters in the CFRP confinement existing models. The models are developed based on experimental results collected from the available literature. The results demonstrate that the LGP-based formulas are able to predict the ultimate compressive strength of concrete cylinders with an acceptable level of accuracy. The LGP results are also compared with several CFRP confinement models presented in the literature and found to be more accurate in nearly all of the cases. Moreover, the formulas evolved by LGP are quite short and simple and seem to be practical for use. A subsequent parametric study is also carried out and the trends of the results have been confirmed via some previous laboratory studies.  相似文献   
10.
Nanoporous hematite (α-Fe2O3) thin films doped with Ti4+ deposited by spray-pyrolysis were successfully used in photoelectrochemical splitting of water for solar hydrogen production. X-ray diffraction, field emission scanning electron microscopy, UV–visible absorption and photoelectrochemical studies have been performed on the undoped and Ti4+ doped hematite thin films. Morphology of α-Fe2O3 thin films was observed to be nanoporous, with increased porosity (pore size ∼12 to 20 nm) on increasing doping concentration. A significant decrease in the bandgap energy from 1.95 to 1.27 eV was found due to doping. α-Fe2O3 film doped with 0.02 M Ti4+ ions exhibited best solar to hydrogen conversion efficiency (photoconversion efficiency) of 1.38% at 0.5 V/SCE. Highest photocurrent densities of 0.34 mA/cm2 at zero bias and 1.98 mA/cm2 at 0.5 V/SCE were obtained by incorporating 0.02 M Ti4+ in α-Fe2O3, which are significantly larger than earlier reported values. Donor density (30.8 × 1020 cm−3) and flatband potential (−1.01 V/SCE) obtained were also maximum for this sample. Hydrogen collected in 1 hr at Pt electrode with the best photoelectrode was 2.44 mL with 150 mW/cm2 visible light source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号