首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
轻工业   13篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2008年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Pepsins 1 and 2 from the stomach of skipjack tuna (Katsuwonus pelamis) were purified to homogeneity by using a series of chromatographic purification involving DEAE-cellulose, Sephadex G-50 and Sephadex G-75 with increase in purity of 246-fold and 213-fold, respectively. Molecular weights of pepsins 1 and 2 were estimated by SDS–PAGE to be 33.9 and 33.7 kDa, respectively. The N-terminal amino acid sequences of the first 20 amino acids of both isoenzymes were YQDGTEPMTNDADLSYYGVI. The optimal pH and temperature for pepsin 1 were 2.5 and 50 °C, respectively, while pepsin 2 showed optimal activity at pH 2.0 and 45 °C. The activity of two pepsins was stable in the pH range of 2–5 and at temperatures up to 50 °C. The activity of purified pepsins was strongly inhibited by pepstatin A in a dose-dependent manner. SDS and cysteine showed inhibitory effects toward both pepsins. Activity of pepsin 2 was slightly activated by NaCl, but NaCl had no effect on pepsin 1. Pepsins 1 and 2 had high affinity and hydrolytic activity toward hemoglobin with K m of 54 and 71 μM, respectively. k cat of pepsins 1 and 2 were 38.1 and 44.3 s−1, respectively. Both pepsins effectively hydrolyzed bovine serum albumin, egg white, natural actomyosin from brownstripe red snapper muscle and acid-solubilized collagen from arabesque greenling skin. Nevertheless, the hydrolytic activity was slightly less than that of pepsin from porcine stomach.  相似文献   
2.
Extraction and some properties of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus) were investigated. Addition of bigeye snapper pepsin (BSP) at a level of 20 kUnits/g of defatted skin resulted in an increased content of collagen extracted from bigeye snapper skin. The yields of collagen from bigeye snapper skin extracted for 48 h with acid and with BSP were 5.31% and 18.74% (dry basis), respectively. With pre-swelling in acid for 24 h, collagen extracted with BSP at a level of 20 kUnits/g of defatted skin for 48 h had a yield of 19.79%, which was greater than that of collagen extracted using porcine pepsin at the same level (13.03%). The skin collagen was characterised to be type I with no disulfide bond. Electrophoretic study revealed slight differences in molecular weight between acid-solubilised collagen and all pepsin-solubilised collagens. The molecular weights of α1 and α2 chains in acid-solubilised collagen were estimated to be 120 and 112 kDa, respectively, whereas α1 and α2 chains of pepsin-solubilised collagens had molecular weights of 118 and 111 kDa, respectively. The result suggested that these pepsin-solubilised collagens might undergo partial cleavage in the telopeptide region by pepsin treatment. The maximum transition temperature (Tmax) of acid-solubilised collagen was observed at 32.5 °C, which was slightly higher than that of pepsin-solubilised collagens (by about 1 °C). Generally, all collagens were highly solubilised in the pH range of 2–5 and sharply decreased at the neutral pH. No changes in solubility were observed in the presence of NaCl up to 3% (w/v) and the decrease was more pronounced with increasing NaCl concentration.  相似文献   
3.
The impact of zinc chloride (ZnCl2) and calcium chloride (CaCl2) as well as bovine gelatin (BG) on the gel strength of phosphorylated fish gelatin (PFG) from the skin of unicorn leatherjacket was investigated. The gel strength of PFG increased with increasing concentrations of ZnCl2 and CaCl2 (2.5–40 μmol L−1). A higher gel strength was observed with CaCl2, compared with ZnCl2. The gel strength of PFG with 20 μmol L−1 CaCl2 increased by 15.7%, compared to the control gel. Nevertheless, at higher concentration (40 μmol L−1) of both salts, gel strength of PFG decreased. Hardness of gels decreased with increasing PFG content (P < 0.05). Nevertheless, no differences in hardness were found amongst gels with BG/PFG ratios of 4:0 and 3:1 (P ≥ 0.05). Thus, PFG could be used in combination with CaCl2 to substitute for BG at a level of 25%.  相似文献   
4.
Lipid oxidation and fishy odour development in protein hydrolysate from fresh and ice-stored Nile tilapia (Oreochromis niloticus) were investigated. During iced storage of 18 days, heme iron content decreased with a concomitant increase in non-heme iron content (P < 0.05). Peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) values increased. Phospholipid content decreased with a corresponding increase in free fatty acid content. The results suggested that lipid hydrolysis and oxidation took place during storage. When protein hydrolysates were produced from fresh and 18 days ice-stored Nile tilapia muscle, higher lipid oxidation and fishy odour/flavour along with higher amount volatile compounds were obtained in hydrolysate for unfresh sample (P < 0.05). However, the addition of mixed antioxidants during hydrolysis process markedly lowered lipid oxidation, b, ΔC, ΔE values, fishy odour/flavour as well as the formation of volatile compounds in the resulting hydrolysates prepared from both fresh and unfresh samples. Therefore, hydrolysate from Nile tilapia muscle with reduced fishy odour and lighter colour could be prepared by using fresh fish and incorporation of mixed antioxidants during hydrolysis.  相似文献   
5.
Acid solubilized collagen (ASC) was extracted from the skin of unicorn leatherjacket (Aluterus monoceros) using 0.5 M acetic acid, followed by precipitation with 2.6 M NaCl. ASC with the yield of 4.19% (wet weight basis) was identified as type I collagen, which was composed of two α1 chains and one α2 chain. Different peptide maps were observed between ASC hydrolyzed by V8 protease and lysyl endopeptidase. The maps were also different from those of type I collagen from calf skin, suggesting the differences in amino acid sequences between both collagens. Glycine was the most predominant amino acid. ASC contained the relatively higher content of alanine, but lower contents of proline and hydroxyproline, compared with calf skin collagen. FTIR analysis showed that ASC was in triple helix structure. Tmax of ASC dispersed in 0.05 M acetic acid and deionized water were 27.7 and 35.8 °C, respectively. Relative viscosity of 0.03% (w/v) ASC dissolved in 0.1 M acetic acid decreased continuously as the temperature increased from 4 to 52 °C, indicating thermal destabilization or denaturation of ASC molecules. ASC had the solubility greater than 90% in very acidic pH range (pH 1–4) and the solubility decreased continuously with increasing NaCl concentrations (0–6%). Net charge of ASC and calf skin collagen became zero at pHs of 5.58 and 5.68, respectively as determined by zeta potential titration. Therefore, skin of unicorn leatherjacket can be used as an alternative collagenous source.  相似文献   
6.
Functional properties and antioxidant activities of protein hydrolysates prepared from ornate threadfin bream (Nemipterus hexodon) muscle, using skipjack tuna pepsin, with different degrees of hydrolysis (DH: 10%, 20% and 30%), were evaluated. Emulsifying and foaming properties of hydrolysates were governed by their DH and concentrations used. Hydrolysates with 20% DH had the highest scavenging activities for ABTS and DPPH radicals. However, chelating activity of hydrolysates for ferrous ion increased as DH increased. Size exclusion chromatography of the hydrolysate with 20% DH using Sephadex G-25 revealed that antioxidative peptides with molecular weight of approximately 1.3 kDa exhibited the highest ABTS radical-scavenging activity. In vitro simulated gastrointestinal digestion indicated that ABTS radical-scavenging activity of the antioxidative peptides was not affected by pepsin hydrolysis, whilst further digestion by pancreatin enhanced the activity. Therefore, protein hydrolysate from the muscle of ornate threadfin bream produced by skipjack tuna pepsin can be used as a promising source of functional peptides with antioxidant properties.  相似文献   
7.
A cDNA clone encoding trypsin (AG-T) was isolated from the pyloric ceca of cold-adapted fish, arabesque greenling (Pleurogrammus azonus). The cDNA was composed of 892 bp with an open reading frame of 729 bp at nucleotide positions 25–753. Similar to all the known trypsin, the AG-T seemed to be synthesized as preproenzyme that contains a hydrophobic signal peptide, an activation pentapeptide and a mature trypsin of 222 amino acid residues. The AG-T also completely conserved the major structural features common to trypsin such as the catalytic triad (His57, Asp102, and Ser195), the obligatory Asp189 and twelve Cys residues. On the other hand, the AG-T possessed the deletion of Tyr151 and substitution of Pro152 for Gly in the autolysis loop when aligned with the sequence of tropical-zone fish and bovine trypsins. In addition, Val75 concerned in a combination with calcium ion was exchanged for Ala in the AG-T, and the content of positively charged amino acid residues at the calcium-binding site of the AG-T was three times higher than those of tropical-zone fish trypsins. Moreover, the ratio between charged and hydrophobic amino acid residues in the N-terminal region of the AG-T was also higher than those of temperate-zone fish and tropical-zone fish trypsins. Such structural properties of the AG-T would contribute to its low thermostability.  相似文献   
8.
Type I collagen from the skin of ornate threadfin bream (Nemipterus hexodon) was purified and characterised. Purified type I collagen contained [α1(I)]2α2(I) as the dominant component with the co-presence of α1(I)α2(I)α3(I). It was rich in glycine and alanine with high content of imino acids (188 residues/1000 residues). The maximum transition temperature (Tm) and the total denaturation enthalpy (ΔH) of purified type I collagen was 33.35 °C and 0.819 J/g, respectively. The isoelectric point (pI) of purified type I collagen was estimated to be 6.40. After hydrolysis of purified type I collagen using pepsin, the band intensity ratios of α1/α2-chains were increased (< 0.05). The cross-linked components were effectively hydrolysed by pepsin 1 and 2 from skipjack tuna stomach and porcine pepsin at 4 °C without the cleavage of β- and α-chains. At 50 °C, they were more susceptible to porcine pepsin hydrolysis, followed by pepsin 2 and 1, respectively.  相似文献   
9.
ABSTRACT:  Pepsin from the stomach of albacore tuna, skipjack tuna, and tongol tuna was characterized. Pepsin from all tuna species showed maximal activity at pH 2.0 and 50 °C when hemoglobin was used as a substrate. Among the stomach extract of all species tested, that of albacore tuna showed the highest activity (40.55 units/g tissue) ( P < 0.05). Substrate-Native-PAGE revealed that pepsin from albacore tuna and tongol tuna consisted of 2 isoforms, whereas pepsin from skipjack tuna had only 1 form. The activity was completely inhibited by pepstatin A, while EDTA (ethylenediaminetetraacetic acid), SBTI (soybean trypsin inhibitor), and E-64 (1-( L -trans-epoxysuccinyl-leucylamino)-4-guanidinobutane) exhibited negligible effect. The activity was strongly inhibited by SDS (sodium dodecyl sulfate) (0.05% to 0.1%, w/v). Cysteine (5 to 50 mM) also showed an inhibitory effect in a concentration dependent manner. ATP, molybdate, NaCl, MgCl2, and CaCl2 had no impact on the activity. When tuna pepsin (10 units/g defatted skin) was used for collagen extraction from the skin of threadfin bream for 12 h, the yield of collagen increased by 1.84- to 2.32-fold and albacore pepsin showed the comparable extraction efficacy to porcine pepsin. The yield generally increased with increasing extraction time ( P < 0.05). All collagen obtained with the aid of tuna pepsin showed similar protein patterns compared with those found in acid-solubilized collagen. Nevertheless, pepsin from skipjack tuna caused the degradation of α and β components. All collagens were classified as type I with large portion of β-chain. However, proteins with molecular weight (MW) greater than 200 kDa were abundant in acid-solubilized collagen.  相似文献   
10.
Complementary DNA clones encoding trypsins were isolated from pyloric ceca of cold-adapted fish, walleye pollock (Theragra chalcogramma) (WP-T) and Arctic cod (Boreogadus saida) (AC-T). The isolated full-length cDNA clones of WP-T and AC-T were 852 and 860 bp, respectively, and both cDNAs were contained an open reading frame of 726 bp. WP-T and AC-T seemed to be synthesized as preproenzyme that contains a signal peptide, an activation peptide, and a mature trypsin. Although the amino acid sequence identities of WP-T and AC-T to that of bovine trypsin were 64 and 63%, respectively, they completely conserved the structural features for catalytic function of trypsin. On the other hand, WP-T and AC-T possessed the four Met residues (Met135, Met145, Met175 and Met242) in their molecules and the deletion of Tyr151 and substitution of Pro152 for Gly in their autolysis loops when aligned with the sequences of tropical-zone fish and bovine trypsins. In addition, the contents of charged amino acid residues at the N-terminal regions (positions 20–50) of WP-T and AC-T were extremely higher than those of other fish and bovine trypsins. Moreover, one amino acid (Asn72) and two amino acids (Asn72 and Val75) coordinating with Ca2+ in bovine trypsin were exchanged for another amino acids in WP-T (His) and AC-T (His and Glu), respectively, and the contents of negative charged amino acids at their Ca2+-binding regions were lower than those of tropical-zone fish and bovine trypsins. Therefore, it was considered that these structural characteristics of WP-T and AC-T are closely related to their lower thermostability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号