首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
电工技术   7篇
化学工业   6篇
机械仪表   1篇
建筑科学   2篇
轻工业   3篇
一般工业技术   1篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
  1989年   2篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
The effects of Ta and Sn contents on the martensitic transformation temperature, crystal structure and thermal stability of Ti-Ta-Sn alloys are investigated in order to develop novel high temperature shape memory alloys. The martensitic transformation temperature significantly decreases by aging or thermal cycling due to the formation of ω phase in the Ti-Ta binary alloys. The addition of Sn is effective for suppressing the formation of ω phase and improves stability of shape memory effect during thermal cycling. The amount of Sn content necessary for suppressing aging effect increases with decreasing Ta content. High martensitic transformation temperature with good thermal stability can be achieved by adjustment of the Ta and Sn contents. Furthermore, the addition of Sn as a substitute of Ta with keeping the transformation temperature same increases the transformation strain in the Ti-Ta-Sn alloys. A Ti-20Ta-3.5Sn alloy reveals stable shape memory effect with a martensitic transformation start temperature about 440 K and a larger recovery strain when compared with a Ti-Ta binary alloy showing similar martensitic transformation temperature.  相似文献   
2.
3.
Recent progress in power electronics technology makes it possible to consider applying self‐commutated converters using gate turn‐off thyristors (GTOs) to HVDC transmission systems. Since the self‐commutated converter can be operated stably without depending on ac‐side voltage, the magnitude and the phase angle of the converter output voltage can be controlled independently. Therefore, this type of converter will improve voltage stability at its ac side. On the other hand, shaft torsional oscillation of a thermal power plant caused by the interaction between the shaft‐generator system and the control system of the self‐commutated converter is still an open problem. In this paper, a linearized model for eigenvalue analysis of a power system, including HVDC interconnection with self‐commutated converters, is described to analyze the effect of the self‐commutated converter on the shaft torsional oscillation of a thermal power plant. Then, numerical results from the eigenvalue analysis of the shaft torsional oscillation are presented. Results obtained by the frequency response method are also reported. The numerical results make it clear that parameter regions of DC‐AVR and ACR control systems of self‐commutated converters exist where the shaft torsional oscillation may be caused. © 1999 Scripta Technica, Electr Eng Jpn, 128(4): 25–37, 1999  相似文献   
4.
This paper presents a novel system reduction method which makes it possible to consider the impact of photovoltaic (PV) penetration on transient stability precisely. The object system for system reduction can be aggregated into a simple equivalent circuit by using the proposed method. The equivalent circuit consists of a lumped load model, a lumped PV model, and three equivalent impedances. Using the equivalent circuit, power flow into the object system when the system voltage changes can be analyzed without repeated power flow calculation of the original system. In order to verify the proposed method, this paper presents a numerical example of transient stability analysis with a one‐generator‐to‐infinite‐bus system model. The results of analysis indicate that transient stability considering PV penetration can be analyzed with high accuracy with the proposed method.  相似文献   
5.
The Unified Power Flow Controller (UPFC) can inject voltage with controllable magnitude and phase angle in series with a transmission line. It can also generate or absorb controllable reactive power. UPFC is expected to be able to damp power system oscillations more effectively than power electronics devices such as SVG and TCSC. In this paper, a control system design of a UPFC for power system damping enhancement based on the eigenvalue control method is proposed. It is made clear that the best design method for the power system damping enhancement is to determine steady‐state values of the UPFC control variables and the control parameters of the UPFC such as gains and time constants simultaneously, because the controllability of UPFC depends on the steady‐state values of UPFC and the power flow condition. The effectiveness of the proposed control system taking into account UPFC inverter ratings is verified by digital time simulation. Furthermore the effects of the input signals to the UPFC controller on small‐signal stability and transient stability enhancement are studied, and it is made clear that UPFC controllers using global information are more effective for power system damping enhancement than those using local information because global information has stronger observability for power system oscillations than local information. © 2000 Scripta Technica, Electr Eng Jpn, 133(3): 35–47, 2000  相似文献   
6.
In this study, we established a procedure based on the microencapsulation vesicle (MCV) method for preparing surface‐modified liposomes, using polyethylene glycol (PEG) and a site‐directed ligand, with high entrapment efficiency of cytochrome c (Cyt c). For preparing a water‐in‐oil (W/O) emulsion, egg phosphatidylcholine and cholesterol were dissolved in organic solvents (O phase) and emulsified by sonication with aqueous solution of Cyt c (W1). Although the dispersion stability of the W1/O emulsion was low when n‐hexane was used to dissolve the lipids in the O phase, it was substantially improved by using mixed solvents consisting of n‐hexane and other organic solvents, such as ethanol and dichloromethane (DCM). The W1/O emulsion was then added to another water phase (W2) to prepare the W1/O/W2 emulsion. PEG‐ and/or ligand‐modified lipids were introduced into the W2 phase as external emulsifiers not only for stabilizing the W1/O/W2 emulsion but also for modifying the surface of liposomes obtained later. After solvent evaporation and extrusion for downsizing the liposomes, approximately 50% of Cyt c was encapsulated in the liposomes when the mixed solvent consisting of n‐hexane and DCM at a volume ratio of 75/25 was used in the O phase. Finally, the fluorescence‐labeled liposomes, with a peptide ligand having affinity to the vasculature in adipose tissue, were prepared by the MCV method and intravenously injected into mice. Confocal microscopy showed the substantial accumulation of these liposomes in the adipose tissue vessels. Taken together, the MCV technique, along with solvent optimization, could be useful for generating surface‐modified liposomes with high drug entrapment efficiency for targeted delivery.  相似文献   
7.
This paper presents high‐order harmonic resonance phenomena of voltage‐sourced converters (VSC). When a voltage‐sourced converter is connected to a power system with cables, there is a possibility that minute high‐order harmonic voltages of a voltage‐sourced converter are magnified by a series resonance and a parallel resonance, and high‐order harmonic resonance phenomena are determined by this study. The cause of high‐order harmonic resonance phenomena is investigated and elucidated by the analysis using EMTP. In addition, it is verified that high‐order harmonic resonance phenomena occur as a practical matter. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 150(3): 26–35, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20054  相似文献   
8.
The phase relation along the binary join of AIPO4-SiO2 were investigated up to 400°C using starting materials made by a solution route. Precursor structures used were boehmite (AIOOH), H3PO4, noncrystalline silica, and quartz. The silica precursors acted as structural seeds for the epitaxial growth of AIPO4. Studies showed that SiO2 and AIPO4 were the only crystalline and noncrystalline phases present along the binary join, and no substantial crystalline solution or any ternary phase was observed. Three polymorphic forms of AIPO4, i.e., berlinite, tridymite, and cristobalite, coexisted as low as 200°C. The nature of the silica precursor greatly influenced the development of the polymorphic phases of AIPO4. The low-quartz precursor suppressed the formation of the cristobalite form of AIPO4 and favored berlinite (AIPO4 quartz) production. On the other hand, noncrystallin silica with a cristobalite-like broad XRD peak suppressed the formation of berlinite and enhaned that of the cristobalite form of AIPO4. These precursor effects indicate that heteroepitaxy is very significant during the nucleation and growth of AIPO4 phases on the surface of SiO2 particles even in these low-temperature reactions.  相似文献   
9.
Transportation projects may lead to deterioration in the average travel time of the urban area because projects reduce travel cost and thus stimulate additional demand caused by migration. Transportation benefits are conventionally measured by the total surplus based on the general equilibrium demand curve for trips. Applying the conventional measurement method to the above paradox of increased congestion results in a negative measured benefit. The present paper explores the economic conditions that lead to this paradox. The study concludes that the necessary condition is the existence of both migration and positive external agglomeration economies. Accordingly, the conventional benefit measurement method is not applicable in this case. Last, the paper shows the benefit measurement formula corresponding to this case and some numerical simulations.  相似文献   
10.
In order to absorb the regenerative power and to reduce the peak input power of a train—in other words, to smooth the input power of the train—in this paper we repot a frequency‐domain‐based power controlling strategy for energy storage of hybrid electric railway vehicles. Applying a loss‐compensating method by using a disturbance observer improves the energy while keeping ability of this controller. However, that loss compensating method requires precise voltage–energy characteristics of the supercapacitor (SC) to estimate the correct loss. Hence, nonlinearity of the capacitance of the SC becomes a problem because it causes an error in the estimated loss. Therefore, this paper presents a method to measure the voltage–energy characteristics precisely of the SC that has a voltage dependence on the capacitance. A method to implement those characteristics into controllers is also proposed. The loss compensating method is applied to a controller by using the proposed method, and its effectiveness is verified by a small‐scale experimental system. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号