首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   11篇
电工技术   18篇
化学工业   112篇
金属工艺   7篇
机械仪表   18篇
建筑科学   22篇
能源动力   13篇
轻工业   39篇
石油天然气   1篇
无线电   29篇
一般工业技术   80篇
冶金工业   121篇
原子能技术   9篇
自动化技术   33篇
  2023年   7篇
  2022年   14篇
  2021年   18篇
  2020年   3篇
  2019年   4篇
  2018年   13篇
  2017年   4篇
  2016年   9篇
  2015年   4篇
  2014年   16篇
  2013年   28篇
  2012年   19篇
  2011年   22篇
  2010年   19篇
  2009年   24篇
  2008年   29篇
  2007年   15篇
  2006年   11篇
  2005年   8篇
  2004年   14篇
  2003年   15篇
  2002年   18篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   37篇
  1997年   31篇
  1996年   16篇
  1995年   10篇
  1994年   11篇
  1993年   12篇
  1992年   3篇
  1991年   4篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   9篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
1.
This study demonstrates the rational fabrication of a magnetic composite nanofiber mesh that can achieve mutual synergy of hyperthermia, chemotherapy, and thermo-molecularly targeted therapy for highly potent therapeutic effects. The nanofiber is composed of biodegradable poly(ε-caprolactone) with doxorubicin, magnetic nanoparticles, and 17-allylamino-17-demethoxygeldanamycin. The nanofiber exhibits distinct hyperthermia, owing to the presence of magnetic nanoparticles upon exposure of the mesh to an alternating magnetic field, which causes heat-induced cell killing as well as enhanced chemotherapeutic efficiency of doxorubicin. The effectiveness of hyperthermia is further enhanced through the inhibition of heat shock protein activity after hyperthermia by releasing the inhibitor 17-allylamino-17-demethoxygeldanamycin. These findings represent a smart nanofiber system for potent cancer therapy and may provide a new approach for the development of localized medication delivery.  相似文献   
2.
While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK) in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter 4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic β-cells under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and facilitates the transport of glucose from the circulation into excrement. It is also known that metformin reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown recently that metformin consumption potentially influences the mortality in patients with type 2 diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another in its long history.  相似文献   
3.
Green fluorescent protein (GFP) is increasingly being used in plant biology from the cellular level to whole plant level. At the cellular level, GFP is being used as an in vivo reporter to assess frequency of transient and stable transformation. GFP has also proven to be an invaluable tool in monitoring trafficking and subcellular localization of protein. At the organ level and up, many exciting applications are rapidly emerging. The development of brighter GFP mutants with more robust folding properties has enabled better macroscopic visualization of GFP in whole leaves and plants. One interesting example has been the use of GFP to monitor virus movement in and among whole plants. GFP is also emerging as a powerful tool to monitor transgene movement and transgenic plants in the field. In a proof-of-concept study, tobacco was transformed with a modified version of the GFP gene controlled by a constitutive (35S) promoter. GFP expression in progeny plants ranged from 0% to 0.5%, and approximately 0.1% GFP was the minimal amount needed for unambiguous macroscopic detection. GFP is the first truly in vivo reporter system useful in whole plants, and we project its usefulness will increase even further as better forms of GFP genes become available.  相似文献   
4.
BACKGROUND: The biotransformation of sesquiterpenoids, which are a large class of naturally occurring compounds, using microorganisms as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpenoids, (+)‐aromadendrene ( 1 ), (−)‐alloaromadendrene ( 2 ) and (+)‐ledene ( 3 ) has been investigated using Aspergillus wentii as a biocatalyst. Results: Compound 1 was converted to (−)‐(10S,11S)‐10,13,14‐trihydroxyaromadendrane ( 4 ). Compound 2 was converted to (+)‐(1S,11S)‐1,13‐dihydroxyaromadendrene ( 5 ) and (−)‐5,11‐epoxycadin‐1(10)‐en‐14‐ol ( 6 ). Compound 3 was converted to compound 6 , (+)‐(10R,11S)‐10,13‐dihydroxyaromadendr‐1‐ene ( 7 ) and (+)‐(10S,11S)‐10,13‐dihydroxyaromadendr‐1‐ene ( 8 ). The structure of the metabolic products has been elucidated on the basis of their spectral data. CONCLUSION: Compound 1 gave only one product that was hydroxylated at C‐10, C‐13 and C‐14. By contrast, compounds 2 and 3 gave a number of products, one of which was common. The differences in oxidation of 1–3 are due to the configuration of the C‐1 position. Compounds 4–8 were new compounds. Copyright © 2008 Society of Chemical Industry  相似文献   
5.
Cordierite/ZrO2 composites with 5 to 25 wt% ZrO2 were fabricated by conventional powder mixing and pressureless sintering method. Their densification behavior, microstructure, mechanical and thermal properties were studied. By dispersing 25 wt% (9.57 vol%) ZrO2, densified cordierite/ZrO2 composite with a relative density of 98.5% was obtained at an optimum sintering condition of 1440 °C and 2 h. ZrO2 particles were homogenously dispersed within matrix grains and at the grain boundaries. The intragranular particles were finer than 100 nm and the intergranular particles were coarser. Both fracture strength and toughness could be enhanced more than two times higher, compare to those of monolithic cordierite, by dispersing 25 wt% ZrO2 into the cordierite matrix. The toughening mechanism in the present composites was mainly attributed to martensitic transformation due to ZrO2 dispersion. Electronic Publication  相似文献   
6.
Deletion of 13 amino acids from the carboxyl terminus of staphylococcal nuclease (WTSNase delta) results in a denatured, partially unfolded molecule that lacks significant persistent secondary structure but is relatively compact and monomeric under physiological conditions [Shortle & Meeker (1989) Biochemistry 28, 936-944; Flanagan et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 748-752]. Because of these and other properties of the SNase delta polypeptide, it is a useful model system for investigating the conformation of the denatured state of a protein without using extreme temperature or solvent conditions. Moreover, since the modification is a carboxyl-terminal deletion, SNase delta may also resemble a transient state of the polypeptide chain as it emerges from a ribosome prior to its folding. In the present study, we have examined the sizes and conformations of mutated forms of SNase delta, using small-angle X-ray scattering and circular dichroism spectroscopy. Seven mutated forms were studied: four with single substitutions, two with double substitutions, and one triple substitution. When present in the full-length SNase, each of these mutated forms exhibited unusual behavior upon solvent or thermal denaturation. In the case of the truncated form (SNase delta), the small-angle scattering curves of the mutated forms fall into two classes: one resembling the scattering curve of compact native nuclease and the other having features consistent with those expected for an expanded coil-like polymer. In contrast, the scattering curve of WT SNase delta exhibits features intermediate between those observed for globular proteins and random polymers. The amino acid substitutions that gave rise to compact, native-like versions of SNase delta were all of the m--type (m-substitutions are predicted to decrease the size of the denatured state). Those which gave rise to versions of SNase delta that were more extended and coil-like than WT SNase delta were of the m+ type (m+ substitutions are predicted to increase the size of the denatured state). Estimates of the residual secondary structure present in WT SNase delta, as well as both the m+ and m-substituted versions of SNase delta, as determined by CD, suggest that the formation of secondary structure and compaction of the polypeptide chain occur concurrently. Our results show that single amino acid substitutions can radically alter the conformational distribution of a partially condensed polypeptide chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
7.
8.
We constructed a probabilistic simulator that allows all the events in population dynamics such as death, birth, mutation, and suppression/stimulation to be described by probabilistic rules. The simulator also facilitates a lattice used for expressing distribution and diversity (number of distinct strains) of quasispecies. The simulator is used to investigate the diversity threshold in HIV and T-cell interaction. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   
9.
Human immunodeficiency virus type-1 (HIV-1) Rev acts by inducing the specific nucleocytoplasmic transport of a class of incompletely spliced RNAs that encodes the viral structural proteins. The transfection of HeLa cells with a rev-defective HIV-1 expression plasmid, however, resulted in the export of overexpressed, intron-containing species of viral RNAs, possibly through a default process of nuclear retention. Thus, this system enabled us to directly compare Rev+ and Rev+ cells as to the usage of RRE-containing mRNAs by the cellular translational machinery. Biochemical examination of the transfected cells revealed that although significant levels of gag and env mRNAs were detected in both the presence and absence of Rev, efficient production of viral proteins was strictly dependent on the presence of Rev. A fluorescence in situ hybridisation assay confirmed these findings and provided further evidence that even in the presence of Rev, not all of the viral mRNA was equally translated. At the early phase of RNA export in Rev+ cells, gag mRNA was observed throughout both the cytoplasm and nucleoplasm as uniform fine stippling. In addition, the mRNA formed clusters mainly in the perinuclear region, which were not observed in Rev+ cells. In the presence of Rev, expression of the gag protein was limited to these perinuclear sites where the mRNA accumulated. Subsequent staining of the cytoskeletal proteins demonstrated that in Rev+ cells gag mRNA is colocalized with beta-actin in the sites where the RNA formed clusters. In the absence of Rev, in contrast, the gag mRNA failed to associate with the cytoskeletal proteins. These results suggest that in addition to promoting the emergence of intron-containing RNA from the nucleus, Rev plays an important role in the compartmentation of translation by directing RRE-containing mRNAs to the beta-actin to form the perinuclear clusters at which the synthesis of viral structural proteins begins.  相似文献   
10.
A 1-Gb/s/pin 512-Mb DDRII SDRAM has been developed using a digital delay-locked loop (DLL) and a slew-rate-controlled output buffer. The digital DLL has a frequency divider for DLL input, performs at an operating frequency of up to 500 MHz at 1.6 V, and provides internal clocking with 50% duty-cycle correction. The DLL has a current-mirror-type interpolator, which enables a resolution as high as 14 ps, needs no standby current, and can operate at voltages as low as 0.8 V. The slew-rate impedance-controlled output buffer circuit reduces the output skew from 107 to 10 ps. This SDRAM was tested using a 0.13-/spl mu/m 126.5-mm/sup 2/ 512-Mb chip.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号