首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   1篇
自动化技术   2篇
  2011年   1篇
  2008年   1篇
  1991年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The principal goal in early missions of satellite-borne visible spectral radiometry (ocean colour) was to create synoptic fields of phytoplankton biomass indexed as concentration of chlorophyll-a. In the context of climate change, a major application of the results has been in the modelling of primary production and the ocean carbon cycle. It is now recognised that a partition of the marine autotrophic pool into a suite of phytoplankton functional types, each type having a characteristic role in the biogeochemical cycle of the ocean, would increase our understanding of the role of phytoplankton in the global carbon cycle. At the same time, new methods have been emerging that use visible spectral radiometry to map some of the phytoplankton functional types. Here, we assess the state of the art, and suggest paths for future work.  相似文献   
2.
A method is presented to identify absorption characteristics of three optically-distinct phytoplankton classes from a suite of measurements of total phytoplankton absorption coefficient and chlorophyll-a concentration by successive application of the two-population absorption model of Sathyendranath et al. (2001) and Devred et al. (2006a). The total phytoplankton absorption coefficient at multiple wavelengths is expressed as the weighted sum of the absorption coefficients of each class at those wavelengths. The resultant system of equations is solved under some constraints to derive the fraction of each class present in any given sample of seawater, given the spectrum of total phytoplankton absorption coefficient. When applied to a large database, the results compare well with phytoplankton size-classes derived from pigment composition, so that we can assume that the three phytoplankton classes derived from absorption coefficients are representative of the pico-, nano- and microphytoplankton size classes. A modification is proposed to the pigment-based phytoplankton size classification of Uitz et al. (2006) to account for the effect of fucoxanthin associated with nanophytoplankton. Comparison between satellite and in situ data demonstrates the potential of satellite ocean-color data to yield the distribution of phytoplankton size classes from space. The algorithm is applied to phytoplankton absorption coefficients derived from remotely-sensed reflectance values collected by SeaWiFS over the Northwest Atlantic in 2007. Monthly composites for April, August and November, representative of Spring, Summer and Fall, give synoptic views of the phytoplankton community structure: a Spring bloom dominated by microphytoplankton is followed by a second, less intense, bloom in the Fall dominated by nanophytoplankton. Picophytoplankton are dominant in the study area in Summer.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号