首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
能源动力   1篇
水利工程   1篇
  2020年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

Mapping vulnerability to Saltwater Intrusion (SWI) in coastal aquifers is studied in this paper using the GALDIT framework but with a novelty of transforming the concept of vulnerability indexing to risk indexing. GALDIT is the acronym of 6 data layers, which are put consensually together to invoke a sense of vulnerability to the intrusion of saltwater against aquifers with freshwater. It is a scoring system of prescribed rates to account for local variations; and prescribed weights to account for relative importance of each data layer but these suffer from subjectivity. Another novelty of the paper is to use fuzzy logic to learn rate values and catastrophe theory to learn weight values and these together are implemented as a scheme and hence Fuzzy-Catastrophe Scheme (FCS). The GALDIT data layers are divided into two groups of Passive Vulnerability Indices (PVI) and Active Vulnerability Indices (AVI), where their sum is Total Vulnerability Index (TVI) and equivalent to GALDIT. Two additional data layers (Pumping and Water table decline) are also introduced to serve as Risk Actuation Index (RAI). The product of TVI and RAI yields Risk Indices. The paper applies these new concepts to a study area, subject to groundwater decline and a possible saltwater intrusion problem. The results provide a proof-of-concept for PVI, AVI, RAI and RI by studying their correlation with groundwater quality samples using the fraction of saltwater (fsea), Groundwater Quality Indices (GQI) and Piper diagram. Significant correlations between the appropriate values are found and these provide a new insight for the study area.

  相似文献   
2.
This paper describes a three-part numerical investigation of fluid flow and heat transfer in a never-previously-studied pipe bend situation. The investigation deals with downstream fluid-flow and heat transfer processes which are affected by upstream flow disturbances. The studied physical situation is a 90° pipe bend fitted with a wall-adjacent obstruction that partially blocks the inlet cross section. The first phase of the work consisted of validating numerical simulation results with experimental data. In the second phase, the impact of the inlet flow distribution on the pressure drop is determined. Heat transfer downstream of the bend exit comprises the third section of the paper. The heat transfer results are reported in terms of the circumferentially averaged Nusselt numbers which are displayed as a function of axial position for Reynolds numbers between 100 and 10,000. It was found that the disturbances caused by the blockage significantly enhance the Nusselt number values.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号