首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
能源动力   1篇
水利工程   2篇
  2022年   1篇
  2016年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 6 毫秒
1
1.
2.

Landuse/landcover change (LULCC) and climate change (CC) impacts on streamflow in high elevated catchments are very important for sustainable management of water resources and ecological developments. In this research, a statistical technique was used in combination with the Soil and Water Assessment Tool (SWAT) to the Upstream Area of the Yangtze River (UAYR). Different performance criteria (e.g., R2, NSE, and PBIAS) were used to evaluate the acceptability of the model simulation results. The model provided satisfactory results for monthly simulations in the calibration (R2; 0.80, NSE; 0.78 and PBIAS; 22.3%) and the validation period (R2; 0.89, NSE; 0.75 and PBIAS; 19.1%). Major landuse/landcover transformations from 1990 to 2005 have occurred from low grassland to medium grassland (2%) and wetlands (0.9%), bare land to medium grassland (0.2%), glaciers to wetland (16.8%), and high grassland to medium grassland (5.8%). The results show that there is an increase in average annual runoff at the Zhimenda station in UAYR by 15 mm of, which approximately 98% is caused by climate change and only 2% by landuse/landcover change. The changes evapotranspiration are larger due to climate change as compared to landuse/landcover change, particularly from August to October. Precipitation and temperature have increased during these months. On the contrary, there has been a decrease in evapotranspiration and runoff from October to March which depicts the intra-annual variations in the vegetation in the study area.

  相似文献   
3.
结合三江源区高寒湿地生态系统的水文循环和生态过程的特点,探讨了三江源区高寒湿地水文循环过程、土壤水热过程、碳循环系统、高寒湿地的退化机制、湿地资源的保护与修复的研究进展,并分析了三江源区高寒湿地生态水文过程研究未来需关注的热点和发展趋势,供借鉴.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号