首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   1篇
水利工程   1篇
一般工业技术   1篇
  2022年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Aqueous solutions of the herbicide azimsulfuron have been treated by a photocatalytic process employing titania nanocrystalline films as photocatalyst. Results showed that solutions of this herbicide at maximum possible concentration can be photodegraded in a time of a few hours by using low intensity UVA radiation comparable with that of the UVA of solar noon. Similar results have also been obtained with simulated solar radiation. Thus heterogeneous photocatalysis can be employed for the treatment of waters polluted by this herbicide.  相似文献   
2.

Aiming to evaluate the efficacy of constructed floating wetlands (CFW) in removing agrochemicals (nutrients and pesticides), a series of experiments were run continuously for a 16-week period in pilot-scale CFW systems to study the effect of two aquatic plant species (duckweed and water hyacinth) and climatic parameters. The CFW systems were loaded daily with agricultural polluted water containing a fertilizer and five pesticides, whose concentrations and removal efficiencies were measured in the experiments. Average nutrient and pesticide reductions varied from 27.4% to 83.6% and from 12.4% to 42.7%, respectively. The two plants performed almost equally well. High temperatures and increased solar radiation significantly contributed to increased removal performance. The results suggest the use of CFW systems as effective and low-cost agricultural pollution control technologies.

  相似文献   
3.
The electrochemical promotion of the CO2 hydrogenation reaction on porous Rh catalyst–electrodes deposited on Y2O3-stabilized-ZrO2 (or YSZ), an O2− conductor, was investigated under atmospheric total pressure and at temperatures 346–477 °C, combined with kinetic measurements in the temperature range 328–391 °C. Under these conditions CO2 was transformed to CH4 and CO. The CH4 formation rate increased by up to 2.7 times with increasing Rh catalyst potential (electrophobic behavior) while the CO formation rate was increased by up to 1.7 times with decreasing catalyst potential (electrophilic behavior). The observed rate changes were non-faradaic, exceeding the corresponding pumping rate of oxygen ions by up to approximately 210 and 125 times for the CH4 and CO formation reactions, respectively. The observed electrochemical promotion behavior is attributed to the induced, with increasing catalyst potential, preferential formation on the Rh surface of electron donor hydrogenated carbonylic species leading to formation of CH4 and to the decreasing coverage of more electron acceptor carbonylic species resulting in CO formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号