首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
水利工程   1篇
一般工业技术   1篇
  2009年   1篇
  1998年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Problems of water resource management are becoming increasingly severe in most countries of the developing world. Already from early in this century it was recognised, wherever water resource management problems began to manifest themselves, that the most appropriate level upon which to study and confront these problems was the river basin. This paper reviews various approaches that have been taken to river basin management and the way in which these have surfaced from the particular range of problems and the political context from which they emerged. Since the end of the 1970s, the rapid development of Thailand has brought into focus the need for integrated resource management as a basis for overcoming increasingly severe problems of drought and flood. Deforestation is seen as a major cause of these problems and so it is in watershed management that the first initiatives are being taken. The paper describes in some detail the system which has been adopted and finally discusses the political and administrative problems facing implementation of the system. © 1998 John Wiley & Sons, Ltd.  相似文献   
2.
The mineralization and biodegradability increase and their combination of two traditional and two relatively new organic contaminants by Fenton reagents with three different types of iron, Fe(2+), Fe(3+), and Fe(0) were investigated. The traditional contaminants examined were trichloroethene (TCE) and 2,4-dichlorophenol (2,4-DCP) while 1,4-dioxane (1,4-D) and 1,2,3-trichloropropane (TCP) were studied for the relatively new contaminants. The mineralization and biodegradability were represented by dissolved organic carbon (DOC) reduction and the ratio of biodegradable dissolved organic carbon and DOC, respectively. For all four contaminants, Fenton reagent using Fe(2+) was more effective in the DOC reduction than Fenton reagents using Fe(3+) and Fe(0) in most cases. The types of Fe that provided maximum biodegradability increase were not the same for all four compounds, Fe(3+) for TCE, Fe(0) for 2,4-DCP, Fe(2+) for 1,4-D, and Fe(3+) for TCP. When the combination of DOC elimination and biodegradability increase (least refractory fraction) was considered, Fe(2+) was the best choice except for 2,4-DCP which was susceptible to Fe(0) catalyzed Fenton reagent the most. The least refractory fractions remaining after 120 min of reaction were 20-25% for TCE, 2,4-DCP, and TCP and 30-40% for 1,4-D. The iron type in Fenton reaction also affected the type of mineralization kinetics of TCE, 2,4-DCP, and TCP as well as the types of degradation by-products of these contaminants. Some of the by-products found, such as isopropanol and propionic aldehyde, which were produced from Fe(0) catalyzed Fenton degradation of TCP, have not been previously reported.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号