首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
水利工程   1篇
自动化技术   1篇
  2018年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Lake Tanganyika, the second largest freshwater ecosystem in Africa, is characterised by a significant heterogeneity in phytoplankton concentration linked to its particular hydrodynamics. To gather a proper understanding of primary production, it is necessary to consider spatial and temporal dynamics throughout the lake. In the present work, daily MODIS-AQUA satellite measurements were used to estimate chlorophyll-a concentrations and the diffuse attenuation coefficient (K490) for surface waters. The spatial regionalisation of Lake Tanganyika, based on Empirical Orthogonal Functions of the chlorophyll-a dataset (July 2002-November 2005), allowed for the separation of the lake in 11 spatially coherent and co-varying regions, with 2 delocalised coastal regions. Temporal patterns of chlorophyll-a showed significant differences between regions. Estimation of the daily primary production in each region indicates that the dry season is more productive than the wet season in all regions with few exceptions. Whole-lake daily primary productivity calculated on an annual basis (2003) was 646 ± 142 mg C m− 2 day− 1. Comparing our estimation to previous studies, photosynthetic production in Lake Tanganyika appears to be presently lower (about 15%), which is consistent with other studies which used phytoplankton biovolume and changes of δ13C in the lake sediments. The decrease in lake productivity in recent decades may be associated to changes in climate conditions.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号