首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
水利工程   3篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.

Mapping vulnerability to Saltwater Intrusion (SWI) in coastal aquifers is studied in this paper using the GALDIT framework but with a novelty of transforming the concept of vulnerability indexing to risk indexing. GALDIT is the acronym of 6 data layers, which are put consensually together to invoke a sense of vulnerability to the intrusion of saltwater against aquifers with freshwater. It is a scoring system of prescribed rates to account for local variations; and prescribed weights to account for relative importance of each data layer but these suffer from subjectivity. Another novelty of the paper is to use fuzzy logic to learn rate values and catastrophe theory to learn weight values and these together are implemented as a scheme and hence Fuzzy-Catastrophe Scheme (FCS). The GALDIT data layers are divided into two groups of Passive Vulnerability Indices (PVI) and Active Vulnerability Indices (AVI), where their sum is Total Vulnerability Index (TVI) and equivalent to GALDIT. Two additional data layers (Pumping and Water table decline) are also introduced to serve as Risk Actuation Index (RAI). The product of TVI and RAI yields Risk Indices. The paper applies these new concepts to a study area, subject to groundwater decline and a possible saltwater intrusion problem. The results provide a proof-of-concept for PVI, AVI, RAI and RI by studying their correlation with groundwater quality samples using the fraction of saltwater (fsea), Groundwater Quality Indices (GQI) and Piper diagram. Significant correlations between the appropriate values are found and these provide a new insight for the study area.

  相似文献   
2.
Water Resources Management - Optimum Control by Artificial Intelligence (OCAI) is presented in this paper as a dynamic decision making algorithm for optimising pumpage schedule to remediate a...  相似文献   
3.
Groundwater vulnerability is assessed by the DRASTIC method, which is more popular among the alternatives available. The challenge taken on board is to treat its inherent subjectivity in estimating the values of the embedded weights as recommended by USEPA for all aquifers. This paper uses a catastrophe based multi-objective evaluation system and applies it to the DRASTIC method to avoid undue preferences by decision maker. Thus, catastrophe fuzzy membership functions are used to treat the dependency of state variables on control parameters and thereby to determine the weights embedded in DRASTIC parameters. The proposed method estimates the weights of DRASTIC parameters with respect to local condition of study area. The Maragheh-Bonab aquifer in Iran is under threat by agricultural and industrial activities and therefore its vulnerability is assessed by the proposed method as well as by the general and pesticide DRASTIC methods. Comparison of results with the special distribution of nitrate-N (NO3-N) shows that the improved DRASTIC has a higher correlation index with respect to the general and pesticide DRASTIC methods. Also in seeking more reliability, the addition of new parameters is possible in the proposed method.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号