首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   2篇
  国内免费   16篇
化学工业   5篇
石油天然气   73篇
  2024年   1篇
  2023年   3篇
  2022年   9篇
  2021年   11篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2000年   3篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
大庆蜡油在酸性催化剂上反应机理的研究   总被引:11,自引:5,他引:6  
以大庆蜡油为原料,采用两种不同类型的催化剂,在流化床反应器实验装鬣上进行催化裂化反应。结果表明,大庆蜡油在酸性催化剂上反应所产生的干气组成与高烯烃催化裂化汽油相同,干气的产生主要是单分子裂化反应所造成的。从干气产率、组成以及液化气组成可以看出,大庆蜡油在不同类型的催化剂上明显地表现出裂化反应类型的差异。  相似文献   
2.
针对以硫含量和烯烃含量高、芳烃含量低的催化裂化汽油为原料加氢脱硫生产满足车用汽油(Ⅴ)标准的汽油(简称国Ⅴ标准汽油)时辛烷值损失偏大的问题,开发了催化裂化汽油溶剂抽提-选择性加氢脱硫组合技术(简称RCDS技术)。中试结果表明,采用RCDS技术处理具有上述特点的催化裂化汽油生产国Ⅴ标准汽油时的RON损失比单独采用选择性加氢脱硫技术时减少0.9~1.9个单位。工业应用结果表明,采用RCDS技术处理硫质量分数为418~460 μg/g、烯烃体积分数为27.6%~27.9%、芳烃体积分数为19.2%~19.3%的清江石化催化裂化汽油,当产品硫质量分数降低至7 μg/g时,汽油RON损失仅为1.0~1.3个单位,且装置汽油收率高达99.9%。  相似文献   
3.
反应温度对汽油烯烃在酸性催化剂上反应的影响   总被引:1,自引:0,他引:1  
以1-庚烯为模型化合物,在小型固定流化床上研究了反应温度对汽油烯烃在酸性催化剂上反应的影响。考察了产物烷烃和烯烃的选择性随反应温度变化的关系。实验结果表明,低温下烷烃的选择性甚至高于烯烃。在一定的反应温度范围内,提高反应温度有利于一些氢转移反应的进行。通过对反应产物的烷烯比分析发现,异丁烯的氢转移能力明显强于丙烯。结合烷烃的双重反应机理,对反应结果进行了分析,并给出了1-庚烯在酸性催化剂上反应生成烷烃和烯烃的反应途径。  相似文献   
4.
对催化裂化汽油中硫化物及烃类分布进行详细分析,确立第二代催化裂化汽油选择性加氢脱硫(RSDS-Ⅱ)技术的工艺路线。中试试验结果表明,RSDS-Ⅱ技术对多种原料油具有较好的适应性。工业应用标定结果表明,以烯烃体积分数38.7%~43.3%、硫质量分数250~470 g/g的催化裂化汽油为原料,经过RSDS-Ⅱ技术处理后汽油产品硫质量分数小于50 g/g,满足沪Ⅳ/欧Ⅳ排放标准,RON损失0.3~0.6个单位,说明RSDS-Ⅱ技术具有较好的脱硫活性和较高的选择性,完全可以满足炼油厂汽油质量升级的需要。  相似文献   
5.
异丙苯在酸性催化剂上的主要化学反应路径   总被引:1,自引:0,他引:1  
 采用小型固定流化床装置(ACE-Model R), 研究了反应温度在450~600℃范围内, 异丙苯在酸性催化剂上的主要化学反应路径。结果表明, 异丙苯在酸性催化剂上的主要化学反应有脱烷基反应、烷基侧链裂化反应、烷基转移反应和氢转移反应等, 其中脱烷基反应是最主要的化学反应, 其选择性为67%~88%;烷基侧链裂化反应选择性为1%~2%;烷基转移反应选择性为1%~10%; 氢转移反应选择性为1%~3%。提高反应温度既有利于脱烷基反应又有利于烷基侧链裂化反应, 烷基侧链裂化反应选择性的增加有利于C1~C2等小分子烃类和短侧链芳烃的生成, 但高温不利于烷基转移反应和氢转移反应.  相似文献   
6.
为了在非临氢条件下实现重芳烃(主要为C9~C11芳烃)轻质化,以催化裂解装置重芳烃产物为原料,开展了重芳烃催化裂化转化中试研究。结果表明:在专用催化剂A作用下,重芳烃发生了高效轻质化,生成了苯、甲苯、二甲苯(BTX)和低碳烃;在不同反应温度下,重芳烃的转化率均达80%以上,BTX产率均达40%以上,低碳烯烃产率约6%;640℃时BTX产率最高,为43.38%,BTX+乙烯+丙烯产率最高可达50%以上;通过调节反应温度可在一定范围内调整BTX的组成分布,随反应温度升高,苯和甲苯产率提高,二甲苯产率降低;产物汽油馏分中芳烃高度浓缩,通过精馏即可生产轻质芳烃,无需新增芳烃抽提装置,可大幅降低BTX生产能耗,实现炼化企业提质增效。  相似文献   
7.
本研究的目的是通过考察催化剂中Y分子筛和ZSM-5分子筛的优化组成,来开发新型催化剂以实现催化裂化过程中同时获得低烯烃含量汽油和高丙烯产率。本研究中制备了5种不同Y分子筛和ZSM-5分子筛比例的复配催化剂,采用小型固定流化床反应器,以催化汽油为原料,在480℃反应温度下考察了复配催化剂中Y和ZSM-5的协同作用对质子化裂化、β-断裂、齐聚和氢转移反应选择性的影响。结果表明:复配分子筛催化剂(Y:ZSM-5=1:4)具有最高的质子化裂化和β断裂反应的能力,甚至高于纯ZSM-5分子筛催化剂。另一方面,复配分子筛催化剂(Y:ZSM-5=3:2)的氢转移反应能力最高,而纯Y分子筛催化剂具有最高的齐聚反应能力。对所有5种催化剂而言,提高转化率均会增强质子化裂化和氢转移反应的选择性,但会减少β-断裂反应的选择性。然而,转化率增加时,齐聚反应的选择性未见明显增加。  相似文献   
8.
确立了第二代催化裂化汽油选择性加氢脱硫(RSDS-Ⅱ)的工艺技术路线,并提出工业装置长周期稳定运转的技术措施,即采用催化裂化稳定汽油作为原料、在加热炉前设置低温脱二烯烃反应器、设置原料过滤器等。工业应用结果表明,RSDS-Ⅱ技术可用于生产硫含量满足国Ⅲ或国Ⅳ排放标准的优质汽油,且产品辛烷值损失小,同时装置可以长周期稳定运行,完全可以满足炼油厂汽油质量升级的需要。  相似文献   
9.
基于催化裂化反应化学,探讨降低干气和焦炭产率的催化裂化新技术(MIP-DCR)开发的原理;采用小型实验装置对该技术的可能操作模式进行探索;在中国石化九江分公司对该技术进行了工业应用,并采用CFD软件探讨了MIP-DCR工业试验装置的预提升混合器冷、热催化剂的可能混合方式。小型实验结果表明,在高活性、低剂油比的操作模式下干气和焦炭产率较低;工业应用结果表明:采用MIP-DCR技术通过减少热裂化和质子化裂化反应可以分别降低干气和焦炭15.48%和4.10%,增加液化气和汽油产率,同时降低能耗;MIP-DCR工艺打破热平衡限制,使剂油比成为独立变量,具有更多、更灵活的操作模式。  相似文献   
10.
龚剑洪  许友好  谢朝钢  龙军 《化工学报》2008,59(8):2014-2020
以大庆减压蜡油(VGO)为原料,采用不同类型分子筛催化剂在小型固定流化床装置上考察了催化裂化过程中苯生成的两条重要途径——芳烃迁移和芳烃生成反应。在Y分子筛催化剂上,从芳烃迁移反应向芳烃生成反应的过渡大约发生在转化率30%附近,芳烃迁移和芳烃生成反应对苯生成的贡献分别约为36%和64%,原料中约5%的烷基苯会发生脱烷基反应生成苯。在ZSM-5分子筛催化剂上,从芳烃迁移反应向芳烃生成反应的过渡大约发生在转化率55%附近,芳烃迁移和芳烃生成反应对苯生成的贡献分别约为20%和80%,原料中约10%的烷基苯会发生脱烷基反应生成苯。通过芳烃生成反应产生的苯与汽油芳烃的比值基本维持一恒定值,而不随转化率变化,但该比值与催化剂的分子筛类型有关。大庆VGO在转化率75%左右会发生苯消耗反应。反应温度会对苯的生成产生影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号