首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   1篇
石油天然气   3篇
  2018年   2篇
  2017年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
油气钻井过程中,破碎的岩屑在井筒钻井液中存在着自由沉降的现象,为了防止和避免岩屑沉积造成沉砂卡钻等井下安全事故,需要研究岩屑颗粒的沉降规律、预测岩屑沉降的末速度。为此,基于Stokes定律和Newton-Rittinger模型,提出了黏性阻力占比系数与压差阻力占比系数的概念,应用最小二乘法对实验数据回归得到阻力占比系数方程,分别推导出岩屑颗粒在牛顿流体与幂律流体中沉降时非斯托克斯区域的阻力计算模型,并通过该模型依据沉积实验数据对岩屑颗粒的沉降末速度进行计算和分析。研究结果表明:(1)岩屑颗粒在幂律流体中沉降时,所受到的黏性阻力和压差阻力不仅与颗粒雷诺数相关,而且还与流性指数及稠度系数相关;(2)岩屑颗粒在牛顿流体中沉降,当颗粒雷诺数小于2.944 6时黏性阻力大于压差阻力,当颗粒雷诺数大于2.944 6时压差阻力大于黏性阻力;(3)颗粒雷诺数小于1.11时岩屑沉降主要考虑黏性阻力,颗粒雷诺数介于1.11~500时岩屑沉降受到黏性阻力与压差阻力的共同作用,颗粒雷诺数大于500时压差阻力在岩屑沉降中占主导作用。结论认为,借助于该计算模型,当钻井液为牛顿流体时,可以预测颗粒雷诺数介于0~105的岩屑沉降末速度;当钻井液为幂律流体时,可以预测颗粒雷诺数介于0~105、流性指数介于0.062 3~1的岩屑沉降末速度;上述范围能够满足钻井工程中对于岩屑沉降速度进行预测的需求。  相似文献   
2.
为了能够准确判断井下复杂情况,基于节流压差原理,以稳定器结构为基础,研制了一种井下压差式环空微流量测量装置,精确测量从钻杆进入井底和环空返回流体流量的微小变化,并通过MWD将井下数据实时传输至地面上,提高了微流量装置对井底复杂情况的判断能力和监测精度,实现了对井底溢流的实时监测。根据建立的微流量测量短节的理论模型,推导出溢流时流量变化与压差的关系式,采用ANSYS有限元模拟软件进行了不同工况模拟,并与现场采集的试验数据进行了分析对比。现场试验表明,微流量测量装置运行稳定、无故障,经受住了现场多种工况的考验,实际测量灵敏度达到了0.5 L/s,对监测井底溢流、特别是气侵具有明显的优势。   相似文献   
3.
指出了流体通过阀门最小过流面积的位置并计算了最小面积,推导得到了阀芯行程与阀门两端节流压降的解析关系式。结合钻井现场数据具体计算,分析得到了楔形节流阀的有效调节区间约为0.49,压降调节范围0.29~14.71MPa,在有效区间内阀门关度与节流压降函数呈现指数关系,既能对井口回压进行精细调节,又能快速改变压降,具有良好的适用性能。对精确计算不同阀门开度下的节流压降以及其他非标准结构的阀门设计和优化都具有十分重要的意义。  相似文献   
4.
控压钻井过程中当监测到井底发生气侵尤其是溢流时,通常通过调节回压泵和节流管汇阀门给井筒施加回压来重新构建井底压力平衡。但气侵后回压压力波到达井底的时间有一个明显的滞后,如仍认为井口回压瞬间加载到井底,由此计算得到的井筒相关参数与实际井筒流动参数必然存在着较大的误差,有可能造成井控失效甚至引发井喷。为此,基于整体平均气液两相流模型,以回压压力波在井筒中传播速度和时间为研究对象,建立了环空气液两相流动的压力波传播方程,并引入气液相间作用力对方程组进行耦合求解。计算结果表明:(1)压力波波速随钻井液密度的增加而增大,随含气率、虚拟质量力系数的增加而呈现出减小的趋势,先急剧变化,之后变化幅度缓慢;(2)当含气率大于0.10或虚拟质量力系数大于0.20时,气液相间动量已充分交换,压力波波速的减小幅度变缓,趋于稳定。以四川盆地蓬莱9井为例,计算得到压力波单次传播的平均时间约为50 s,4个回合的总传播时间约为200s,占系统控制响应总时间的67%以上。结论认为,采用该方法计算得到的压力波在环空中的传播速度及传播时间更加符合实际井况,可大幅度提升MPD钻井系统控压响应时间的准确性和自适应节流阀控制的精度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号