首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   13篇
  国内免费   4篇
电工技术   8篇
综合类   1篇
化学工业   64篇
金属工艺   7篇
机械仪表   8篇
建筑科学   9篇
矿业工程   3篇
能源动力   27篇
轻工业   31篇
水利工程   7篇
石油天然气   6篇
无线电   12篇
一般工业技术   87篇
冶金工业   21篇
原子能技术   3篇
自动化技术   66篇
  2024年   1篇
  2023年   6篇
  2022年   16篇
  2021年   13篇
  2020年   20篇
  2019年   19篇
  2018年   21篇
  2017年   22篇
  2016年   16篇
  2015年   12篇
  2014年   28篇
  2013年   46篇
  2012年   11篇
  2011年   22篇
  2010年   18篇
  2009年   15篇
  2008年   19篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1970年   1篇
排序方式: 共有360条查询结果,搜索用时 375 毫秒
1.
2.
In real world, the automatic detection of liver disease is a challenging problem among medical practitioners. The intent of this work is to propose an intelligent hybrid approach for the diagnosis of hepatitis disease. The diagnosis is performed with the combination of k‐means clustering and improved ensemble‐driven learning. To avoid clinical experience and to reduce the evaluation time, ensemble learning is deployed, which constructs a set of hypotheses by using multiple learners to solve a liver disease problem. The performance analysis of the proposed integrated hybrid system is compared in terms of accuracy, true positive rate, precision, f‐measure, kappa statistic, mean absolute error, and root mean squared error. Simulation results showed that the enhanced k‐means clustering and improved ensemble learning with enhanced adaptive boosting, bagged decision tree, and J48 decision tree‐based intelligent hybrid approach achieved better prediction outcomes than other existing individual and integrated methods.  相似文献   
3.
The prototyping of complex sheet metal parts using single point incremental forming (SPIF) requires the generation of optimal tool paths and/or tool path sequences that ensure that the formed part is within geometric design specifications. The presence of a multitude of features on complex parts leads to multiple inaccuracy inducing phenomena occurring simultaneously due to interactions between the features. This paper proposes a network analysis methodology using topological conceptual graphs to capture the effects of different phenomena on the final accuracy of a sheet metal part manufactured by SPIF. Using this framework optimized tool paths can be generated that compensate for the inaccuracy inducing behavior. Tool path generation algorithms to create partial tool paths that account for the accuracy of specific features in the part based on the proposed framework are also presented. Finally, the creation of integrated tool paths maintaining complementarity between tool paths and desired continuity behavior using non-uniform cubic B-splines is illustrated. A number of case studies demonstrating the applicability of the integrated framework are discussed, where the maximum deviations in the part are significantly reduced and the average absolute deviations for the complete part are brought down to less than 0.5 mm.  相似文献   
4.
Organic solvent nanofiltration (OSN) is gradually expanding from academic research to industrial implementation. The need for membranes with low and sharp molecular weight cutoffs that are able to operate under aggressive OSN conditions is increasing. However, the lack of comparable and uniform performance data frustrates the screening and membrane selection for processes. Here, a collaboration is presented between several academic and industrial partners analyzing the separation performance of 10 different membranes using three model process mixtures. Membrane materials range from classic polymeric and thin film composites (TFCs) to hybrid ceramic types. The model solutions were chosen to mimic cases relevant to today's industrial use: relatively low molar mass solutes (330–550 Da) in n-heptane, toluene, and anisole.  相似文献   
5.
Journal of Applied Electrochemistry - The choice of the electroplating conditions of Ni-based alloys has always been a serious research question. In this study, an artificial neural network based...  相似文献   
6.
Performance of four microbial fuel cells (MFC-1, MFC-2, MFC-3 and MFC-4) made up of earthen pots with wall thicknesses of 3, 5, 7 and 8.5 mm, respectively, was evaluated. The MFCs were operated in fed batch mode with synthetic wastewater having sucrose as the carbon source. The power generation decreased with increase in the thickness of the earthen pot which was used to make the anode chamber. MFC-1 generated highest sustainable power density of 24.32 mW/m(2) and volumetric power of 1.04 W/m(3) (1.91 mA, 0.191 V) at 100 Ω external resistance. The maximum Coulombic efficiencies obtained in MFC-1, MFC-2, MFC-3 and MFC-4 were 7.7, 7.1, 6.8 and 6.1%, respectively. The oxygen mass transfer and oxygen diffusion coefficients measured for earthen plate of 3 mm thickness were 1.79 × 10(-5) and 5.38 × 10(-6) cm(2)/s, respectively, which implies that earthen plate is permeable to oxygen as other polymeric membranes. The internal resistance increased with increase in thickness of the earthen pot MFCs. The thickness of the earthen material affected the overall performance of MFCs.  相似文献   
7.
8.
Conventional derivative based learning rule poses stability problem when used in adaptive identification of infinite impulse response (IIR) systems. In addition the performance of these methods substantially deteriorates when reduced order adaptive models are used for such identification. In this paper the IIR system identification task is formulated as an optimization problem and a recently introduced cat swarm optimization (CSO) is used to develop a new population based learning rule for the model. Both actual and reduced order identification of few benchmarked IIR plants is carried out through simulation study. The results demonstrate superior identification performance of the new method compared to that achieved by genetic algorithm (GA) and particle swarm optimization (PSO) based identification.  相似文献   
9.
Intelligent computing system (ICS) and knowledge-based system (KBS) have been widely used in the detection and interpretation of EMG (electromyography) based diseases. Heuristic-based detection methods of EMG parameters for a particular disease have also been reported in the literature but little effort has been made by researchers to combine rule-based reasoning (RBR) and case-based reasoning of KBS, and ANN (artificial neural nets) of ICS. Integrating the methods in KBS and ICS improves the computational and reasoning efficiency of the problem-solving strategy. We have developed an integrated model of CBR and RBR for generating cases, and ANN for matching cases for the interpretation and diagnosis of neuromuscular diseases. We have hierarchically structured the neuromuscular diseases in terms of their physio-pyscho (muscular, cognitive and psychological) parameters and EMG based parameters (amplitude, duration, phase etc.). Cumulative confidence factor is computed at different node from lowest to highest level of hierarchal structure in the process of diagnosis of the neuromuscular diseases. The diseases considered are Duchenne muscular dystrophy, Polymyostits, Endocrine myopathy, Metabolic myopathy, Neuropathy, Poliomyletis and Myasthenia gravis. The basic objective of this work is to develop an integrated model of RBR, CBR and ANN in which RBR is used to hierarchically correlate the sign and symptom of the disease and also to compute cumulative confidence factor (CCF) of the diseases. CBR is used for diagnosing the neuromuscular diseases and to find the relative importance of sign and symptoms of a diseases to other diseases and ANN is used for matching process in CBR.  相似文献   
10.
ABSTRACT

Event-triggering strategy is one of the real-time control implementation techniques which aims at achieving minimum resource utilisation while ensuring the satisfactory performance of the closed-loop system. In this paper, we address the problem of robust stabilisation for a class of nonlinear systems subject to external disturbances using sliding mode control (SMC) by event-triggering scheme. An event-triggering scheme is developed for SMC to ensure the sliding trajectory remains confined in the vicinity of sliding manifold. The event-triggered SMC brings the sliding mode in the system and thus the steady-state trajectories of the system also remain bounded within a predesigned region in the presence of disturbances. The design of event parameters is also given considering the practical constraints on control execution. We show that the next triggering instant is larger than its immediate past triggering instant by a given positive constant. The analysis is also presented with taking delay into account in the control updates. An upper bound for delay is calculated to ensure stability of the system. It is shown that with delay steady-state bound of the system is increased than that of the case without delay. However, the system trajectories remain bounded in the case of delay, so stability is ensured. The performance of this event-triggered SMC is demonstrated through a numerical simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号