首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   12篇
化学工业   1篇
石油天然气   7篇
无线电   5篇
一般工业技术   15篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1978年   1篇
排序方式: 共有29条查询结果,搜索用时 78 毫秒
1.
Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 2, pp. 14–15, February, 1989.  相似文献   
2.
3.
We report the results of investigating a low-voltage, polarization-insensitive, reflective-type modulator based on an epsilon-GaSe crystal and operated at the 1.960-eV line of a He-Ne laser. We demonstrate that the modulation in an Al-epsilon-GaSe-Cu device results mainly from the Franz-Keldysh effect. Relatively high speed and low operating voltage could make these modulators with Schottky-barrier contacts attractive devices in the red range of the spectrum.  相似文献   
4.
Due to brisk industrial growth, the marine traffic has become an imperative subject in the open sea nowadays. The crew inside the vehicle traffic service (VTS) centre is facing challenging issues on account of continuous growth in vessel number. Currently, most of VTS centers’ are using the ARPA RADAR based conventional vehicle traffic management system and VTS staff has to carry out most of the things manually to guide the ship’s captain properly. Therefore, there is a strong impetus in the field of ocean engineering to develop a smart system which can take the data from RADAR and autonomously manipulate it, to calculate the degree of collision risk among all vessels from the VTS centre. Later on, the traffic management officer utilizes this information for intelligent decision making. In the past, several researchers have addressed this issue to facilities the VTS crew and captain of the ship but mostly, their research work was for academic purposes and could not get popularity because of extra manual workload. Our proposed vessel collision risk assessment system is an intelligent solution which is based on fuzzy inference system and has the ability to solve the said issues. We calculated the DCPA, TCPA, bearing and VCD among all vessels ships from the VTS centre by using conventional marine equipments and exploited the extracted information to calculate and display the degree of collision risk among all vessels. Furthermore, we developed the RADAR filtration algorithm which helps the VTS officer to gauge out the degree of collision risk around a particular ship. To authenticate the validity and to monitor the performance efficiency, we developed RADAR operated intelligent software which directly gets the required data from RADAR and displays the vessels list based on their degree of collision severity. The laboratory experiments confirm the validity of the proposed system.  相似文献   
5.
Translated from Fiziko-khimicheskaya Mekhanika Materialov, No. 5, pp. 114–115, September–October, 1990.  相似文献   
6.
The exponentially growing works on 2D materials have resulted in both high scientific interest and huge potential applications in nanocatalysis, optoelectronics, and spintronics. Of especial note is that the newly emerged and promising family of metal phosphorus trichalcogenides (MPX3) contains semiconductors, metals, and insulators with intriguing layered structures and architectures. The bandgaps of the members in this family range from 1.3 to 3.5 eV, significantly enriching the application of 2D materials in the broad wavelength spectrum. In this review, emphasizing their remarkable structural, physicochemical, and magnetic properties, as well as the numerous applications in various fields, the innovative progress on layered MPX3 crystals is summarized. Different from other layered materials, these crystals will advance a fascinating frontier in magnetism and spintronic devices with their especially featured atomic layered nanosheets. Thus, their crystal and electronic structures, along with some related researches in magnetism, are discussed in detail. The assortments of growth methods are then summarized. Considering their potential applications, the prominent utilization of these 2D MPX3 nanoscrystals in catalysis, batteries, and optoelectronics is also discussed. Finally, the outlook of these kinds of layered nanomaterials is provided.  相似文献   
7.
8.
Translated from Fiziko-Khimicheskaya Mekhanika Matrialov, Vol. 25, No. 3, pp. 101–102, May–June, 1989.  相似文献   
9.
2D layered transition metal phosphorus trichalcogenides (MPX3) possess higher in‐plane stiffness and lower cleavage energies than graphite. This allows them to be exfoliated down to the atomic thickness. However, a rational exfoliation route has to be sought to achieve surface‐active and uniform individual layers. Herein, monolayered FePS3 quantum sheets (QSs) are systematically obtained, whose diameters range from 4–8 nm, through exfoliation of the bulk in hydrazine solution. These QSs exhibit a widened bandgap of 2.18 eV as compared to the bulk (1.60 eV) FePS3. Benefitting from the monolayer feature, FePS3 QSs demonstrate a substantially accelerated photocatalytic H2 generation rate, which is up to three times higher than the bulk counterpart. This study presents a facile way, for the first time, of producing uniform monolayer FePS3 QSs and opens up new avenues for designing other low‐dimensional materials based on MPX3.  相似文献   
10.
Transition metal dichalcogenides (TMDs), as one of potential electrocatalysts for hydrogen evolution reaction (HER), have been extensively studied. Such TMD‐based ternary materials are believed to engender optimization of hydrogen adsorption free energy to thermoneutral value. Theoretically, cobalt is predicted to actively promote the catalytic activity of WS2. However, experimentally it requires systematic approach to form CoxW(1?x)S2 without any concomitant side phases that are detrimental for the intended purpose. This study reports a rational method to synthesize pure ternary CoxW(1?x)S2 nanosheets for efficiently catalyzing HER. Benefiting from the modification in the electronic structure, the resultant material requires overpotential of 121 mV versus reversible hydrogen electrode (RHE) to achieve current density of 10 mA cm?2 and shows Tafel slope of 67 mV dec?1. Furthermore, negligible loss of activity is observed over continues electrolysis of up to 2 h demonstrating its fair stability. The finding provides noticeable experimental support for other computational reports and paves the way for further works in the area of HER catalysis based on ternary materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号