首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   25篇
  国内免费   3篇
电工技术   2篇
化学工业   64篇
金属工艺   3篇
机械仪表   3篇
建筑科学   6篇
能源动力   8篇
轻工业   19篇
水利工程   2篇
石油天然气   1篇
无线电   20篇
一般工业技术   22篇
冶金工业   5篇
原子能技术   1篇
自动化技术   27篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   10篇
  2020年   12篇
  2019年   9篇
  2018年   11篇
  2017年   14篇
  2016年   18篇
  2015年   9篇
  2014年   19篇
  2013年   18篇
  2012年   7篇
  2011年   10篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
1.
Nowadays different kinds of double-skin facades are developed and used in new architectural projects. The aim of these facades is, on the one hand, to increase internal comfort and, on the other hand, to decrease energy consumption. In order to optimise the overall performance of the double-skin façades, their detailed behaviour needs to be better understood. The prediction of the airflow within the channel (between the two glazings) is very important for understanding of the double-skin facades behaviour, especially in summer conditions. A comprehensive modelling of a compact double-skin facade equipped with a venetian blind and forced ventilation is proposed here. The modelling is done using the CFD (computational fluid dynamics) approach to assess the air movement within the ventilated facade channel. Three-dimensional airflow is modelled using a homogeneous porous media representation, in order to reduce the size of the mathematical model. A parametric study is proposed here, analysing the impact of three parameters on the airflow development: slat tilt angle, blind position and air outlet position. The distance between the blind and the external glazing was found to have a major impact on the velocity profiles inside the double-skin facade channel.  相似文献   
2.
A simple, fast, and reliable liquid–liquid micro-extraction (LLME) method assisted by thermal ultrasound approach was developed for simultaneous determination of synthetic phenolic antioxidants (SPAs) in edible oils by high-performance liquid chromatography equipped with ultraviolet detector (HPLC-UV). The synthetic antioxidants were propyl gallate (PG), butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), and butylated hydroxyltoluene (BHT). The best extraction conditions were observed were methanol/acetonitrile (1:1, v/v) as the solvent, ultrasound at 4 min, and a temperature of 40°C. The linearity of the calibration curves for the optimum conditions were R2 > 0.989 for all of the SPAs in a range from 1–200 μg ml−1. Relative standard deviation (RSD %) for five analysis was in range of 2.83% to 4.21%. Limit of detection (LOD) and limit of quantification (LOQ) were obtained in range of 0.012–0.06 and 0.04–0.2 μg g−1, respectively. With regard to recovery, a range of 91%–116% was calculated for the spiked edible oils.  相似文献   
3.
Mass transfer within the T-shaped and cross-shaped micromixers has been studied using CFD and confocal laser scanning microscopy methods. The concentration profiles, based on flow regimes, were used to compare the T- and cross-geometries. The cross-shaped micromixer tends to intensify the mixing and this is occurring for lower flow rates in comparison to the T shape. The improvement made by the cross geometry is attributed to the stronger vortex stretching and high shear rate, which reduces the liquid transfer length. The presence of a single outlet in the T-shaped micromixer induces a smaller degree of freedom for the fluid. A higher pressure drop is calculated in T-shaped micromixer than in cross-shaped micromixer.  相似文献   
4.
Bulletin of Engineering Geology and the Environment - A better understanding of the spatiotemporal evolution of landslides in urban zones is a key factor in assessing the risk of future slides...  相似文献   
5.
In this paper, the multi carrier energy (MCE) systems are reviewed from different point of views including mathematical models, integrated components and technologies, uncertainty management, planning objectives, environmental pollution, resilience, and robustness. The basic of MCE systems is formed by combination of cooling, heating and power (CCHP). The natural gas and electricity are the main inputs to MCE systems and the cooling, heating, and electricity are the common outputs. The regular energy converters in the MCE systems are combined heat and power (CHP), gas boiler, absorption-electrical chillers, power to gas (P2G) and fuel-cell. The generic energy storages are electrical, heating, cooling, hydrogen, carbon dioxide (CO2) and hydro systems.  相似文献   
6.
Fuel cell electric vehicles (FCEVs) have some limitation which make them less competitor to thermal ones and delay their commercialization. The most important problems as the range, the durability and the cost depend directly on the energy storage problematic issues. In this context, this work presents an optimal sizing methodology for an Energy Storage System (ESS) composed by a fuel cell and an assistant source to supply a lightweight vehicle with 700 km driving range. Firstly, a comparative study between single and hybrid source is carried out to show the benefits of hybridization according to the range in terms of weight, cost and fuel consumption. Moreover, in order to improve the hybrid source characteristics, three technologies of the secondary source are tested and evaluated to be chosen for hybridization with fuel cell system purposes. Furthermore, the influence of three Energy Management Strategies (EMSs) on ESS sizing is studied where an optimal strategy provides the most favorable dimensions of the hybrid system. Simulation results give us the best technology needed for hybridization and allow us adopting the optimal management strategy to design the hybrid source. Finally, in order to show the influence of the driving cycles on the ESS design, a comparison study using the New European Driving Cycle “NEDC” and the Assessment and Reliability of Transport Emission Models Inventory Systems (ARTEMIS) confirms that there is a slow influence of the driving cycle on the ESS sizes.  相似文献   
7.
The present study deals with weak gels based on sulfonated polyacrylamide (SPA)/scleroglucan (SC)/Cr3+ with an exceptional thermal stability in electrolyte media. The rheological results showed that on increasing the SC concentration the shear viscosity and storage modulus of the SPA/SC/Cr3+ system were increased and the dependence of the storage modulus on frequency became weaker. The yield stress of the SPA/SC/Cr3+ system was higher than that of the corresponding SPA/SC system. The thermochemical stability increased with increasing relaxation time. The SPA/SC/Cr3+ semi‐interpenetrating network exhibited the lowest viscosity loss in electrolyte media; therefore this system may be a potential candidate for enhanced oil recovery applications. © 2016 Society of Chemical Industry  相似文献   
8.
Structure–property relationship in typical polypropylene/polycarbonate/poly[styrene-b-(ethylene-co-butylene)-b-styrene] (PP/PC/SEBS) ternary blends containing maleated SEBS (SEBS-g-MAH) was investigated. Three grades of PC with different melt viscosities were used, and changes in blend morphology from PC/SEBS core–shell particles partially surrounded by SEBS-g-MAH to inverse SEBS/PC core–shell particles in PP matrix were observed upon varying the viscosity ratio of PC to SEBS. It was found that the viscosity ratio completely controls the size of the core–shell droplets and governs the type, population, and shape of the dispersed domains, as evidenced by rheological, mechanical, and thermomechanical behavioral assessments. Dynamic mechanical analysis of samples with common (PC–SEBS) and inverse (SEBS–PC) core–shell particles revealed that they show completely different behaviors: blends containing PC–SEBS presented a higher storage and loss modulus, while blends containing SEBS–PC exhibited a lower β-transition temperature. Moreover, ternary blends with PC cores showed the highest Young’s modulus values and the lowest impact strength, due to the different fracture modes of the blends containing PC–SEBS and SEPS–PC core–shell droplets, which present debonding and shell-fracture mechanisms, respectively. Morphological observations of blends with high-molecular-weight PC demonstrated the presence of detached droplets and rods of PC in the PP matrix, along with composite core–shell and rod-like particles. Micrographs of the fracture surfaces confirmed the proposed mechanisms, given the presence of stretched (debonded) PC (SEBS) cores encapsulated by SEBS (PC), which require more (less) energy to achieve fracture. The correlation between the mechanical and morphological properties proves that decreasing core diameter and shell thickness has positive effects on the impact strength but decreases the Young’s modulus.  相似文献   
9.
ABSTRACT

In the event of a severe accident, past experiences such as Three Mile Island and Fukushima Daichi have shown that the reactor core of a light-water nuclear reactor, if not properly safeguarded, could go through a meltdown. This will be followed by the formation of a corium, a mix of molten fuel elements, and liquid metals from the Reactor Pressure Vessel (RPV). In the worst-case scenario, a melt through from the RPV can occur and lead to the spreading of the corium, in the form of a molten element’s jet impinging on a flat concrete structure of the Primary Containment Vessel (PCV). To enhance the decommissioning and the safety procedure, scope of the present article is to deepen the understanding of the phenomena involved in the mentioned scenario, mainly jet-instability and molten material spreading. In the present study, experiments were carried out, by using corium simulant materials such as Copper and Tin, to investigate the link between the instability of the gravity-driven molten metal jet and the impinging followed by its spreading over a flat area.  相似文献   
10.
Uniform spherical chitosan particles of size <10 μm in diameter are important in drug delivery applications due to their excellent biocompability and biodegradability. A high concentration of chitosan in the particles can help to control the release of drugs and methods for processing high viscosity chitosan solutions are therefore required. In principle, any type of polymer, whether hydrophobic or hydrophilic, can be electrosprayed to obtain monodisperse particles of diameter <10 μm. In practice, however, electrospraying of biopolymers having viscosities of >100 mPa s results in particles >10 μm diameter. In this study, by reducing surface tension of a high viscosity chitosan suspension, it was found that smaller diameter particles could be prepared. Chitosan solutions were electrosprayed in the stable cone-jet mode to systematically study the relationship between particle diameter, viscosity and surface tension. Increasing viscosity resulted in larger diameter particles with a broad size distribution, but decreasing surface tension had the opposite effect. Results show that a chitosan solution having a viscosity of ~80 mPa s can be used to prepare chitosan particles of diameter ~2.5 μm which on drying reduced to particles of 500 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号