首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   24篇
电工技术   1篇
综合类   1篇
化学工业   117篇
金属工艺   6篇
机械仪表   8篇
建筑科学   8篇
矿业工程   1篇
能源动力   28篇
轻工业   9篇
水利工程   10篇
石油天然气   14篇
无线电   14篇
一般工业技术   37篇
冶金工业   19篇
原子能技术   1篇
自动化技术   26篇
  2024年   1篇
  2023年   8篇
  2022年   6篇
  2021年   10篇
  2020年   17篇
  2019年   26篇
  2018年   20篇
  2017年   21篇
  2016年   16篇
  2015年   10篇
  2014年   12篇
  2013年   42篇
  2012年   19篇
  2011年   18篇
  2010年   15篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1990年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有300条查询结果,搜索用时 765 毫秒
1.
PURPOSE: The purpose of this investigation was to evaluate the surgeon's ability to assess various types of globe injury, to determine the force necessary to rupture the globe with these types of injuries, and to determine typical orbital retraction forces used in the clinical setting. MATERIALS AND METHODS: Forty-four enucleated globes from recently killed cows were divided into four equal groups-one uninjured control group, one group with a through-and-through scleral laceration, another group with a subtotal scleral laceration, and the last group with an 18-gauge needle perforation. Twenty-seven boarded or board eligible oral and maxillofacial surgeons were asked to assess one sample from each of the four groups. They were then asked to retract a simulated globe on a custom-fabricated jig to determine clinical retraction forces. Ten globes from each of the four groups were then subjected to forces until rupture on an Instron 8501M mechanical testing unit. Accuracy of the clinical assessment was determined, and means and standard deviations of the retraction forces and globe rupture forces were derived. RESULTS: Through-and-through lacerations were assessed by surgeons with 100% accuracy, subtotal lacerations with 96% accuracy, uninjured globes with 74% accuracy, and perforated globes with 15% accuracy. Globe rupture occurred at 16.72+/-7.87 kg in the control group, 20.36+/-7.87 kg in the perforated group, 15.38+/-6.06 kg in the subtotal laceration group, and 4.94+/-2.56 kg in the through-and-through laceration group. Statistically significant differences (P < .001) were noted between the total laceration group and all other groups. The mean retraction force was 0.35+/-0.47 kg, which was statistically less than the force used in all of the rupture groups (P < .001). CONCLUSIONS: Severe injuries (through-and-through lacerations) were assessed with 100% accuracy by the clinicians, and less severe injuries with less accuracy. Rupture forces for globes with perforations and subtotal lacerations were no different than for the control group, but substantially less than for the total laceration group. The simulated clinical retraction forces were substantially more than the rupture forces in all of the groups, including the through-and-through laceration group.  相似文献   
2.
This paper extends hybrid-type optimization models of genetic algorithm adaptive network-based fuzzy inference system (GA-ANFIS) for predicting the soil permeability coefficient (SPC) of different types of soil. In these models, GA optimizes parameters of a subtractive clustering technique that controls the structure of the ANFIS model’s fuzzy rule base. Simultaneously, a hybrid leaning algorithm is employed in the ANFIS, as a trained fuzzy inference system (FIS), which optimally determines the parameter sets of the examined FISs in ANFIS. Using an updated large database of SPCs consisting of 338 fine-grained, 178 mixed and 94 granular soil samples, GA-ANFIS framework constructs different models of predicting the permeability coefficient of respectively fine-grained, mixed and granular soils. A fuzzy C-mean technique has been used to cluster the entire data samples of each type of soil and divide them uniformly into training and testing data sets. Different prediction models of SPC have been trained and tested for each of the three soil types, and the appropriate models have been selected. The selected models have been compared with ANN and modified-by-GA empirical prediction models. Results show that the constructed GA-ANFIS models outperform the other models in terms of the prediction accuracy and the generalization capability.  相似文献   
3.
In this paper, we present an energy-efficient method for distributed region formation flying of nanosatellites. The proposed framework consists of two concurrent sub-schemes that include estimation and formation. In the estimation sub-scheme, unlike the existing methods on satellite formation flying, that assume the availability of the reference orbital elements to all followers, here, a distributed estimator is developed so that the follower nanosatellites estimate the position of the leader in its orbital slot. In the formation sub-scheme, we consider a region formation strategy which is an efficient method in dealing with the formation of a large number of nanosatellites. We propose an optimal region following formation method based on the receding horizon control (RHC) using the estimated reference orbital elements. Subsequently, an algorithm is presented to solve the proposed energy-efficient formation flying method. Finally, the simulation result is presented that illustrates the purposed method improves the power consumption for each nanosatellite with respect to the existing non-optimal region formation flying controllers.  相似文献   
4.
In this paper, we evaluate the adequacy of several performance measures for the evaluation of driving skills between different drivers. This work was motivated by the need for a training system that captures the driving skills of an expert driver and transfers the skills to novice drivers using a haptic-enabled driving simulator. The performance measures examined include traditional task performance measures, e.g., the mean position error, and a stochastic distance between a pair of hidden Markov models (HMMs), each of which is trained for an individual driver. The emphasis of the latter is on the differences between the stochastic somatosensory processes of human driving skills. For the evaluation, we developed a driving simulator and carried out an experiment that collected the driving data of an expert driver whose data were used as a reference for comparison and of many other subjects. The performance measures were computed from the experimental data, and they were compared to each other. We also collected the subjective judgement scores of the driver’s skills made by a highly-experienced external evaluator, and these subjective scores were compared with the objective performance measures. Analysis results showed that the HMM-based distance metric had a moderately high correlation between the subjective scores and it was also consistent with the other task performance measures, indicating the adequacy of the HMM-based metric as an objective performance measure for driving skill learning. The findings of this work can contribute to developing a driving simulator for training with an objective assessment function of driving skills.  相似文献   
5.
H2 production via water–gas shift (WGS) reaction in a Pd membrane reactor prepared by the electroless plating technique (ELP) “organic–inorganic” method was investigated. Pd nanoparticles embedded polyethylene glycol (PEG) was used as a polymer template during the activation step. Gas permeation results showed an infinite selectivity for H2/N2 with a H2 flux of 0.004–0.016 mol/m2·s depending on operating conditions while it decreased until 0.0005 mol/m2·s for gas mixtures. Furthermore, WGS membrane reactor experiments showed a maximum CO conversion of 98.5% with a H2 recovery of 16% at 450°C. The membrane performance was consistent during WGS catalytic membrane reactors (CMR) tests, thereby confirming the stability of the obtained membrane.  相似文献   
6.
Protection of Metals and Physical Chemistry of Surfaces - Shot peening is a treatment used to increase surface hardness and wear resistance. In this study, the effect of shot peening on the...  相似文献   
7.
In present work, the aim of producing biodiesel from waste cooking oil was pursued by doping the cerium element into the MCM‐41 framework as catalyst with various Si/Ce molar ratio (5, 10, 25, 50, and Ce = 0). The catalytic performance and stability improved by employing the ultrasound irradiation in active phase loading step of catalyst preparation. The physicochemical characteristics of synthesized samples were investigated using various techniques as follows: Brunauer‐Emmett‐Teller (BET), X‐ray powder diffraction (XRD), Fourier transfer infrared (FTIR), energy‐dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). The XRD patterns along with the results of FTIR and BET analysis revealed the MCM‐41 framework destruction while increasing the Ce content. The FESEM images of the nanocatalysts illustrated a well distribution and uniform morphology for the Ca/CeM (Si/Ce = 25). The particle size and size distribution of the Ca/CeM (Si/Ce = 25) were subsequently determined by TEM and FESEM images. The activity of fabricated nanocatalysts was evaluated by measuring the free acid methyl ester (FAME) content of produced biodiesel. The tests were carried out at constant operational conditions: T = 60°C, catalyst loading = 5 wt%, methanol/oil molar ratio = 9, and 6‐hour reaction time. A superior activity was observed for Ca/CeM (Si/Ce = 25) among other nanocatalysts with 96.8% conversion of triglycerides to biodiesel. The mentioned sample was utilized in five reaction cycles, and at the end of the fifth cycle, the conversion reached to 91.5% which demonstrated its significant stability.  相似文献   
8.
In this study, the effect of potassium hydroxide concentration in anodization bath, anodization time, and calcination temperature on the photo-electrochemical behavior of metallic titanium/mixed phase titanium oxide is investigated. Further, the phase structure of a titanium oxide photocatalyst prepared on a titanium electrode through a high-voltage anodization method is examined. The study exploits photo-electrochemical, Fourier transform infrared spectroscopy attenuated total reflectance (FTIR–ATR), X-ray diffraction, and Raman spectroscopic methods to obtain better insights into the mechanism of mixed-phase titanium oxide formation. In this regard, the photo-electrochemical properties of the photocatalysts prepared in single excitation energy, violet light (410 nm), were investigated. The anodization time and the potassium hydroxide concentration in the anodization bath have significant effects on the photo-electrochemical properties of the photocatalysts. The experiments show that the effect of potassium hydroxide concentration is a function of the anodization potential applied, demonstrating different patterns as the anodization potential changes. Furthermore, FTIR-ATR, X-ray diffraction, and Raman spectroscopic studies reveal that the extended anodization times decrease the population of OH-containing groups, leading to lower photo-electrochemical performance. On the other hand, the formation of anatase phases becomes more favorable only in the extended anodization times before application of the calcination process. Additionally, the calcination temperature has a significant impact on the anatase to rutile ratio. Finally, increasing potassium hydroxide concentration leads to the formation of an amorphous titanium oxide layer. It can be concluded that the obtained information might have a significant impact on the preparation of titanium oxide and other metal oxide photocatalysts through the high voltage anodization process.  相似文献   
9.
Nano‐sized polyhedral oligomeric silsesquioxane (POSS) diol or ethylene glycol (EG) as diol monomer was incorporated into hydroxyl‐terminated polybutadiene (HTPBD) chain in the presence of fumaryl or thionyl chloride as extenders. Using these polyesterification reactions, two fumarate‐based polyesters and two polyester sulfites were synthesized. Each couple of polyesters and polyester sulfites includes a linear (diol:EG) and a nanohybrid macromer (diol:POSS). Full structural characterization was performed using Fourier transform infrared, 1H NMR and 13C NMR spectroscopies. Gel permeation chromatography was undertaken to study polyesterification mechanisms by deconvolution of the obtained traces. Finally, differential scanning calorimetry, thermogravimetric analysis and cell culture were performed to evaluate the structure–property relationship for the synthesized macromers in comparison with unreacted HTPBD. © 2016 Society of Chemical Industry  相似文献   
10.
Laminar forced convection of heat transfer and pressure drop of Al2O3 and CuO/water nanofluids flow through a horizontal tube and wavy channel under constant wall temperature boundary condition is numerically investigated. Two different models were employed in our study: single phase (homogenous and dispersion) and two phase (Lagrangian–Eulerian model or discrete-phase model (DPM) and the mixture). The effects of various parameters, such as particle concentration, particle diameter, particle type, constant or temperature-dependent properties, wave amplitude, Reynolds number and Peclet number on the thermal, and flow field of the Nanofluids are analyzed. Our results revealed that variable properties assumption play a dominant role in horizontal tubes and provide better predictions for the heat transfer enhancement. The difference between constant and variable properties becomes insignificant and can be ignored in wavy channel due to the high mixing and generated recirculation zones, whereas the difference between the DPM and the single-phase variable properties diminish as Peclet number and volume fraction increases. However, dispersion model shows an excellent agreement with the experimental data; the absence of the reference values for the adjustable factor Cd in the open literature put it in a questionable position. Therefore, DPM and homogenous single-phase model with well-chosen thermal conductivity and viscosity correlations can be considered as an accurate way and more dependable in nanofluid simulations especially the homogenous single-phase model because it requires less time, CPU, and memory usage. As expected, it is found that the heat transfer increases as the Reynolds number and particle volume fraction increases, but it is accompanied by a higher pressure drop. The obtained results have been successfully validated and compared with the experimental and numerical data available in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号