首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
金属工艺   3篇
机械仪表   2篇
无线电   1篇
一般工业技术   1篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
多晶硅表面制绒技术研究现状   总被引:1,自引:0,他引:1  
周兆忠  吴喆  冯凯萍 《材料导报》2015,29(9):55-61, 67
光伏产业在新能源发展规划中占有重要地位,目前多晶硅太阳能电池已经成为太阳能电池市场主流。硅片表面绒面的质量对太阳能电池转换效率有重要影响,多晶硅表面制绒技术也越来越受到世界各国的重视。掌握多晶硅表面制绒技术的原理及特点对提高表面绒面质量十分重要。首先分析多晶硅表面制绒的技术要求,随后根据不同的技术原理,依次对干法制绒技术、湿法制绒技术以及掩膜制绒技术进行综述,详细分析不同制绒技术的技术特点并阐述其应用实例,随后从绒面质量、制绒效率、成本以及环保性等方面对多晶硅制绒技术进行评述,最后对多晶硅制绒技术的发展趋势进行预测。  相似文献   
2.
3.
对偏心运动双平面超精研抛圆柱面的加工技术进行了理论和试验研究。基于几何运动学理论建立了加工系统数学模型,应用速度矢量法求解圆柱工件各运动参数,进而实现了工件圆柱面加工轨迹的仿真,分别分析了工件中心至夹具中心距离与夹具中心至研磨盘中心距离的比值、夹具自转转速与夹具公转转速的比值对加工轨迹形态和轨迹交叉角度的影响规律。在自制试验装置上对轴承钢GCr15圆柱滚子进行了超精研磨和抛光试验,改善了一批工件圆柱面的圆度和表面粗糙度及其偏差。仿真结果和试验结果的比较分析说明,仿真结果可反映实际工件表面微观加工痕迹的相互交叉的几何特征。  相似文献   
4.
针对圆柱滚子高精密研磨加工过程中效率低下的问题,在双平面偏心盘式圆柱滚子抛光方法基础上,提出基于金刚石固结磨料磨具的圆柱滚子研磨方法.自制金刚石丸片,用上下盘黏附的金刚石丸片对圆柱滚子进行超精密研磨加工,研究丸片中不同金刚石微粉粒度代号、砂结比及研磨液黏度对圆柱滚子表面粗糙度、材料去除率、平均圆度误差及批直径变动量的影...  相似文献   
5.
目的 针对传统粉末热压成形细粒度金刚石磨具存在颗粒团聚、磨削碳化硅陶瓷容易在表面产生较深划痕的问题,提出一种基于冷冻-解冻凝胶成形的细粒度金刚石磨具,用于精密磨削碳化硅陶瓷,并研究其加工工艺.方法 制备聚乙烯醇-酚醛树脂复合凝胶胶水,将金刚石和填料在凝胶胶水中剪切分散,得到的浆料浇筑在模具中,在–20℃低温条件下反复冷...  相似文献   
6.
针对研磨片研磨过程中工件表面粗糙峰去除和研磨片磨粒涂覆层磨粒脱落的问题,将离散元技术应用到研磨片研磨过程微观表面变化研究中。以PFC3D软件为平台,对研磨片的研磨过程进行了建模与仿真,将模型简化为理想梯形凸起的粗糙峰层和磨粒-结合剂混合层的相互接触摩擦过程,通过双轴试验表征了模型微观参数,开展了单元接触点不平衡力的变化规律、单元脱落过程、磨粒涂覆层中结合剂结合强度以及砂结比对研磨过程的影响分析。研究结果表明,接触点处的不平衡力呈现散射样式逐步减弱,不平衡力峰值为5.9×103N;磨粒平行粘结强度为723 Pa,砂结比为1∶6时研磨效果最好,粗糙峰可以有效去除,表层钝化磨粒可以有效脱落。  相似文献   
7.
目的 实现微小光学器件高效、高质量、绿色的可溶固着软质磨粒薄膜抛光,对可溶固着软质磨粒抛光薄膜的制备工艺及抛光性能进行研究。方法 研究可溶树脂、不可溶树脂、磨粒和薄膜基底等原料对成膜及抛光性能的影响,探索可溶固着软质磨粒抛光薄膜制备工艺,以光纤连接器作为加工对象验证抛光薄膜的抛光特性。结果 选用双峰SiO2作为磨粒,采用环氧树脂(质量分数为95%)和聚丙烯酸树脂(质量分数为5%)组成的“可溶”混合树脂为结合剂,可实现磨粒层逐步溶解。在磨粒涂覆层中添加5%(质量分数)的硅橡胶可调节磨粒涂覆层成膜后的弹性模量和硬度,使薄膜兼顾抛光性能和耐用性。对PET薄膜基底进行电晕处理可增强其表面附着力。选用含1%(质量分数为)有机硅烷偶联剂的聚氨酯树脂作为PET基底和磨粒涂覆层连接剂,结合强度好,成膜后表面无裂纹。通过光纤端面抛光对比实验发现,可溶固着软质磨粒抛光薄膜的抛光性能和耐用性均优于日本NTTAT抛光片的相关性能。可溶固着软质磨粒抛光薄膜使用25次后,光纤端面仍可保持表面光滑,曲面面形完整,表面粗糙度Ra小于5 nm,回波损耗大于45 dB,连接损耗小于0.1 dB。结论 抛光实验表明,可溶固着软质磨粒抛光薄膜能实现光纤端面的高效精密加工。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号