首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   5篇
无线电   5篇
一般工业技术   3篇
冶金工业   1篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
用常规射频(RF)溅射系统,采用三步法在p型Si(111)上高重复率地制备出高品质的立方氮化硼(c-BN)薄膜.通过对c-BN薄膜生长过程的分析,找出了传统两步法制备高品质的c-BN薄膜重复率不高的原因.在两步法之前增加了使湍流层结构氮化硼(t-BN)转化为斜方六面体结构的氮化硼(r-BN)的步骤,即将形核过程分也为两步,使重复率显著提高.傅立叶变换红外吸收光谱的结果表明当第一步偏压为180 V,时间为5 min时,得到了立方相含量为85%的c-BN薄膜.  相似文献   
2.
放电等离子烧结TbFeCo磁光靶材工艺研究   总被引:2,自引:0,他引:2  
研究了采用放电等离子烧结技术制备TbFeCo磁光靶材的工艺过程,考察了烧结温度对材料组织均匀性和致密度的影响。利用扫描电子显微镜和能谱分析仪对材料的微观组织形貌及成分进行了分析,同时用阿基米德法测量了材料的密度。结果表明:适当的提高烧结温度可以使材料得到均匀的组织,理想的致密度。但过高的烧结温度会造成材料局部组织的熔化,使材料的组织均匀性变差,l010℃的烧结温度是制备具有均匀组织和理想致密度Tb(Fe,Co)3材料的最佳温度。  相似文献   
3.
研究立方氮化硼薄膜表面的性质对于研究立方氮化硼薄膜的成核机理和应用,具有重要的价值.本文用XPS对立方氮化硼薄膜表面进行研究,并对有关问题进行了讨论.XPS分析表明,立方氮化硼薄膜表面除了B、N外,还含有C和O.从XPS谱图计算得到含有立方相的氮化硼薄膜的N/B为0.90,较接近于氮化硼的理想化学配比11;不含立方相的氮化硼薄膜的N/B为0.86,离氮化硼的理想化学配比11较远.计算表明立方氮化硼薄膜的顶层六角相的厚度约为0.8nm.  相似文献   
4.
通常人们对氮化硼薄膜的S掺杂,采用的是在氮化硼制备过程中就地掺杂的方法,文中则采用S离子注入方法.氮化硼薄膜用射频溅射法制得.实验结果表明,在氮化硼薄膜中注入S,可以实现氮化硼薄膜的n型掺杂;随着注入剂量的增加,氮化硼薄膜的电阻率降低.真空退火有利于氮化硼薄膜S离子注入掺杂效果的提高.在离子注入剂量为1×1016cm-2时,在600℃的温度下退火60min后,氮化硼薄膜的电阻率为2.20×105 Ω·cm,比离子注入前下降了6个数量级.  相似文献   
5.
通常人们对氮化硼薄膜的S掺杂,采用的是在氮化硼制备过程中就地掺杂的方法,文中则采用S离子注入方法.氮化硼薄膜用射频溅射法制得.实验结果表明,在氮化硼薄膜中注入S,可以实现氮化硼薄膜的n型掺杂;随着注入剂量的增加,氮化硼薄膜的电阻率降低.真空退火有利于氮化硼薄膜S离子注入掺杂效果的提高.在离子注入剂量为1×1016cm-2时,在600℃的温度下退火60min后,氮化硼薄膜的电阻率为2.20×105 Ω·cm,比离子注入前下降了6个数量级.  相似文献   
6.
陈浩  邓金祥  陈光华  刘钧锴  田凌 《半导体学报》2005,26(12):2369-2373
用射频溅射设备,采用两步法制备了宽带隙立方氮化硼(c-BN)薄膜.研究了在其他条件不变的情况下,成核阶段衬底温度对制备c-BN薄膜的影响.c-BN薄膜沉积在p型Si(100)衬底上,薄膜成分由傅里叶变换红外吸收谱标识.研究发现:衬底温度是立方BN薄膜成核的一个重要参数;要得到一定立方相体积分数的薄膜,成核阶段衬底温度有一个阈值,成核阶段衬底温度低于400℃,薄膜中没有立方相的存在;衬底温度为400℃时,薄膜中开始形成立方相;衬底温度达到500℃时,得到了立方相体积分数接近100%的薄膜,并且薄膜中立方相体积分数随着成核阶段衬底温度的升高而增加.还研究了成核阶段衬底温度对薄膜立方相红外吸收峰峰位的影响.结果显示:随着成核阶段衬底温度的升高,薄膜中立方相吸收峰峰位向低波数漂移,说明薄膜内的压应力随成核阶段衬底温度的升高而降低,薄膜中最小压应力为3.1GPa.  相似文献   
7.
通常人们对氮化硼薄膜的S掺杂,采用的是在氮化硼制备过程中就地掺杂的方法,文中则采用S离子注入方法. 氮化硼薄膜用射频溅射法制得. 实验结果表明,在氮化硼薄膜中注入S,可以实现氮化硼薄膜的n型掺杂;随着注入剂量的增加,氮化硼薄膜的电阻率降低. 真空退火有利于氮化硼薄膜S离子注入掺杂效果的提高. 在离子注入剂量为1E16cm-2时,在600℃的温度下退火60min后,氮化硼薄膜的电阻率为2.20E5Ω·cm,比离子注入前下降了6个数量级.  相似文献   
8.
用射频溅射设备,采用两步法制备了宽带隙立方氮化硼(c-BN)薄膜.研究了在其他条件不变的情况下,成核阶段衬底温度对制备c-BN薄膜的影响.c-BN薄膜沉积在p型Si(100)衬底上,薄膜成分由傅里叶变换红外吸收谱标识.研究发现:衬底温度是立方BN薄膜成核的一个重要参数;要得到一定立方相体积分数的薄膜,成核阶段衬底温度有一个阈值,成核阶段衬底温度低于400℃,薄膜中没有立方相的存在;衬底温度为400℃时,薄膜中开始形成立方相;衬底温度达到500℃时,得到了立方相体积分数接近100%的薄膜,并且薄膜中立方相体积分数随着成核阶段衬底温度的升高而增加.还研究了成核阶段衬底温度对薄膜立方相红外吸收峰峰位的影响.结果显示:随着成核阶段衬底温度的升高,薄膜中立方相吸收峰峰位向低波数漂移,说明薄膜内的压应力随成核阶段衬底温度的升高而降低,薄膜中最小压应力为3.1GPa.  相似文献   
9.
用射频溅射系统制备了BN薄膜,并且用离子注入的方法在BN薄膜中注入S,从而成功制备了n-BN/p-Si薄膜异质结,并研究了异质结的电学性质.注入S的BN薄膜是用13.56 MHz射频溅射系统沉积在p型Si(100)(5~6 Ω·cm)衬底上,靶材为h-BN靶(纯度为99.99%).离子注入时,注入离子的能量为190 keV,注入剂量为1015/cm2.对注入后的薄膜进行了退火处理(退火温度为600℃),用真空蒸镀法在异质结表面蒸镀了2 mm×5 mm的铝电极,以便测量掺杂后异质结的电学性质.实验结果表明离子注入掺杂后制备的n-BN/p-Si异质结的I-V曲线具有明显的整流特性,其正向导电特性的拟合结果表明异质结的电流输运符合"隧道-复合模型"理论.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号