首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
无线电   4篇
  2022年   3篇
  2021年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
王孝坤  戚二辉  胡海翔  苏航  李凌众  王晶  罗霄  张学军 《红外与激光工程》2022,51(1):20210953-1-20210953-7
在简要总结了各种检测大口径反射镜难点的基础上,为了实现30 m望远镜(TMT)超大口径第三反射镜的高精度检测,提出了一种融合五棱镜扫描技术和子孔径拼接测试技术的新方法。大口径反射镜分阶段依次进行了五棱镜扫描测试和子孔径拼接检测,对该技术的基本原理和基础理论进行了分析和研究,制定了检测30 m望远镜第三反射镜(口径为3.5 m×2.5 m)的方案,对其测试流程、五棱镜设计、五棱镜扫描像差拟合、拼接最优化算法等进行了详细分析,并对30 m望远镜第三反射镜的原理镜进行了实验验证,其最终拼接检测面形的均方根值(RMS)和斜率均方根值(slopeRMS)分别为28.676 nm和0.97 μrad。  相似文献   
2.
王晶  王孝坤  胡海翔  李凌众  苏航 《红外与激光工程》2021,50(10):20210527-1-20210527-7
随着先进光学系统设计与制造的发展,大口径光学系统得到了广泛的应用。然而,大口径平面镜高精度面形的检测手段不足,限制了大口径平面镜的制造与应用。为实现大口径平面反射镜的高精度面形检测,提出一种夏克哈特曼扫描拼接检测平面镜面形的方法。对扫描拼接原理、波前重构算法进行了研究,建立了微透镜阵列成像的数学模型,验证了夏克哈特曼扫描拼接检测原理的可行性。针对一口径为150 mm的平面镜进行了扫描拼接检测实验,拼接得到的全口径面形为0.019λ RMS(λ=635 nm);与干涉检测结果对比,检测精度为0.008λ RMS,结果表明该方法能够实现大口径平面反射镜的高精度检测。  相似文献   
3.
光学元件常用脆性材料作为原材料,脆性材料加工过程中极易引入亚表面缺陷,亚表面缺陷对脆性材料的制造阶段和应用阶段均存在严重的危害。制造方面,亚表面缺陷影响工序的选择与衔接,易产生过加工、欠加工等问题,导致加工效率低下;应用方面,亚表面缺陷影响光学元件的成像质量、稳定性、使用寿命等关键技术参数。为了高效率、高质量地去除亚表面缺陷,全面表征和准确检测光学元件的亚表面缺陷至关重要。文中首先介绍了不同加工方式对应的亚表面缺陷形成机理与亚表面缺陷的表征方法研究现状;其次归纳总结了破坏性与非破坏性的亚表面缺陷检测方法,分别介绍了不同检测方法的原理、适用材料与加工阶段、优点与不足之处;并介绍了基于表面粗糙度、加工参数的亚表面缺陷预测方法;最后,对亚表面缺陷检测技术的发展趋势进行了展望。  相似文献   
4.
苏航  王孝坤  程强  李凌众  王晶  李雯研  吴琼  唐瓦  罗霄  张学军 《红外与激光工程》2022,51(9):20220576-1-20220576-9
为了实现大口径凸非球面的高精度检测,提出了将子孔径拼接检测法和计算全息补偿检测法相结合的检测方法。由于其中心的非球面度较小,采用球面波直接检测;而外圈的非球面度较大,采用子孔径拼接和计算全息混合补偿的方法进行测量,再通过拼接算法将中心检测数据和外圈检测数据进行拼接从而得到全口径面形。结合实例对一块口径为540 mm的大口径凸非球面进行测量,并将检测结果与Luphoscan 检测结果进行对比,两种方法检测面形残差的RMS值为0.019λ,自检验子孔径与拼接结果点对点相减后的RMS值为0.017λ。结果表明该方法能够实现大口径凸非球面的高精度检测。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号