首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   2篇
  2024年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
超分辨荧光显微镜突破了光学衍射极限造成的空间分辨率限制,使得生物学家能够在生命体和细胞具有活性的状态下,对其功能与结构进行高精度动态记录,有望揭示更多重要的生命现象细节。然而,由于超分辨荧光显微技术的成像视场、深度、分辨率、速度等不易兼得,所以解卷积作为一种最有效且直接的求解逆问题的框架,被广泛应用于增强超分辨显微镜的时空分辨率。研究人员聚焦于通过相应算法设计实现高质量显微图像的重建,在一定程度上克服了超分辨荧光显微镜的硬件限制,可以更好地恢复生物信息。本文首先介绍了解卷积方法的基本原理及其发展历程,接着列举了不同解卷积技术在不同模态下的重建原理和效果以及这些技术在生物学上的应用,最后总结了基于深度学习的解卷积方法在超分辨荧光显微镜技术上的最新进展和未来的发展潜力,并对包括傅里叶环相关的定量评估图像重建质量的方法的最新进展进行了阐述。  相似文献   
2.
管道机器人是对复杂系统中管道损伤进行检测和评估的主要工具之一,通过沿行进方向搭载成像系统,实现了在管道中的运动导航和内环境观察。然而,这会导致管壁信息存在于图像传感器边缘,不可避免地会受到镜头畸变的影响而降低对损伤的检测精度,提高对损伤的定量难度。而搭载额外的成像系统观察管壁会大大增加机器人的承载负荷和整体体积,尤其在小尺寸管道机器人中。设计一款适用于管道机器人的微型化管壁成像系统。经过元件选型、光学系统优化和3D打印集成后,整个系统的体积为25 mm×30 mm×12 mm,最优横向分辨率为15.63μm。最后利用该系统制作了一款微型管道机器人,验证了其成像效果和定量能力。此系统有望搭载到其他管道机器人上作为扩展载荷,提升对管壁细节信息的捕捉能力。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号