首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
无线电   1篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
在公共场所佩戴口罩,是防止新型冠状病毒传染的最主要手段,在必要的场所,每个人都必须佩戴口罩以进行自我保护。在人群相对集中的公共场所,相互之间不可避免地存在遮挡干扰,从而产生了小范围内的复杂干扰识别问题。如果使用单一的卷积神经网络对口罩佩戴进行识别,有可能造成提取关键特征信息时聚焦度欠缺,出现特征提取不足等问题。因此本文提出一种两渠道卷积神经网络的佩戴口罩识别方法。在卷积神经网络的基础上,通过2个输入渠道,分别对眼睛区域和眼睛以下的区域,进行特征提取;最后通过基于决策层的信息融合方法,将2个渠道的识别结果加以融合,从而得到最终的识别结果,其平均识别准确率达到了98.8%。经过实验验证,该方法在佩戴口罩的识别上,取得了较好的识别准确率。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号