首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   5篇
  国内免费   138篇
电工技术   3篇
综合类   2篇
化学工业   3篇
金属工艺   1篇
机械仪表   3篇
建筑科学   6篇
石油天然气   2篇
无线电   200篇
一般工业技术   38篇
冶金工业   5篇
  2024年   1篇
  2023年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   18篇
  2007年   34篇
  2006年   24篇
  2005年   10篇
  2004年   25篇
  2003年   13篇
  2002年   21篇
  2001年   12篇
  2000年   17篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   6篇
  1992年   1篇
  1991年   3篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
1.
研究并对比了Ti/Al/Ni/Au和Ti/Al/Pt/Au多层金属膜与未掺杂的Al0 .2 2 Ga0 .78N/GaN(i AlGaN/GaN)异质结构之间的欧姆接触性质。在退火温度低于 70 0℃时 ,两种接触样品上都不能得到欧姆接触。随着退火温度的升高 ,85 0℃快速退火后 ,在Ti/Al/Ni/Au接触上获得了 1.2 6×10 - 6 Ω·cm2 的比接触电阻率 ,在Ti/Al/Pt/Au接触上获得了 1.97× 10 - 5Ω·cm2 的比接触电阻率。研究结果表明 ,金属与半导体接触界面和Al0 .2 2 Ga0 .78N异质结构界面载流子沟道之间适当的势垒的存在对高质量欧姆接触的形成起重要作用 ,势垒的宽度取决于退火温度以及退火的具体进程。对Ti/Al/Ni/Au和Ti/Al/Pt/Au欧姆接触比接触电阻率的差异进行了解释。  相似文献   
2.
通过XRD和Raman谱研究了用金属有机化学气相沉积 (MOCVD)的方法在Si( 111)面上生长的AlN薄膜层上的应力和压电极化 ,Raman谱观察到两个声子峰位分别在 619.5cm- 1 (A1 (TO) )和 668.5cm- 1 (E2 (high) )。通过光学声子E2 (high)的频移为 13cm- 1 计算得到AlN薄膜上的双轴压应力为 5 .1GPa ,在z轴方向上和在垂直于z轴方向上的应变分别为εzz=6 7× 10 - 3和εxx=-1 1× 10 - 2 ,产生的压电极化电荷PPE=2 .2 6× 10 - 2 c·m- 2 ,这相当于在Si的表面产生浓度为 1.41× 10 1 3c·cm- 2 的电子积累。同时 ,实验还发现在MOCVD生长过程中存在Si原子的扩散 ,在界面处形成了一个过渡层 ,过渡层主要以Si原子取代Al原子的位置并形成Si-N键为主。  相似文献   
3.
用化学气相淀积方法在Si(100)衬底上生长了Ge组分渐变的Si1-xGex:C合金缓冲层.研究表明,较高温度下生长的Si1-xGex:C缓冲层中Ge的平均含量较高,其晶体质量要优于较低温度下生长的外延薄膜.载流子浓度沿衬底至表面方向逐渐上升且Si1-xGex:C缓冲层总体呈p型导电,存在一局域n型导电区,本文对其导电分布特性进行了分析研究.  相似文献   
4.
研究了 Ga N高温宽禁带半导体外延层上欧姆接触的制备工艺 ,讨论了几种测试方法的优缺点 ,并根据器件制作的工艺兼容性 ,在 n-Ga N样品上获得了 4× 1 0 - 6 Ω·cm2的欧姆接触 ,在 Al Ga N/Ga N异质结构样品上获得了 4× 1 0 - 4Ω· cm2 的欧姆接触。实验结果表明 ,Al Ga N/Ga N上低阻欧姆接触的制备及其工艺兼容性是Ga N HFET器件研制的技术难点  相似文献   
5.
研究了脉冲中子辐照的中子嬗变掺杂 (NTD)硅二极管中缺陷的形成及其退火特征 ,并与热中子辐照样品进行了比较。深能级瞬态谱仪 (DL TS)测量表明硅中主要存在五类电活性缺陷 :氧空位 E1(Ec- 0 .19e V) ,不同荷电态的双空位 E2 (Ec- 0 .2 8e V)和 E4 (Ec- 0 .4 0 e V) ,双空位与氧杂质相结合的络合物 E3 (Ec- 0 .31e V) ,以及与样品材料原生缺陷有关的辐照感生缺陷 E5(Ec- 0 .4 8e V)。实验结果表明 ,脉冲中子辐照由于其高的中子能量和辐照剂量率 ,导致复杂络合物的浓度高于简单缺陷浓度。进一步 4 0 0℃温度以下退火实验显示了缺陷的分解和重建过程  相似文献   
6.
用化学气相淀积(CVD)的方法, 在6H-SiC衬底上同质外延生长SiC层, 继而外延生长了Si1-yCy合金薄膜, 用X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼散射等方法对所得的样品进行了表征测量, 着重研究了生长得到的Si1-yCy合金的晶体结构。SEM结果显示6H-SiC外延层上生长的Si1-yCy合金薄膜表面平整, 晶粒大小均匀; XRD衍射谱仅显示单一的特征衍射峰(2θ约为28.5°), 表明得到的合金薄膜晶体取向单一, 其晶体类型为4H型; 粗略估算, 合金薄膜中C含量约为3.7%。拉曼谱显示:随生长气源中的C/Si比的增加, Si1-yCy合金薄膜中替位式C含量逐渐增大, 当C/Si比达到一定值时, 合金薄膜中有间隙式C出现, 造成晶体缺陷, Si1-yCy合金薄膜晶体质量下降。  相似文献   
7.
应用MOCVD方法我们在c轴取向的蓝宝石衬底上生长出Fe掺杂和Mn掺杂GaN薄膜。通过改变前驱物的通入量,我们制备出不同掺杂浓度的样品。应用高分辨透射电镜,我们对样品的微结构进行了分析。对于Fe过掺杂GaN样品,我们发现了六角结构的Fe3N团簇的存在,并且Fe3N(0002)面平行于GaN(0002)面;对于Mn过掺杂GaN样品,我们发现了六角结构的Mn6N2.58相的存在,并且Mn6N2.58(0002)面平行于GaN(0002)面。同时,由于晶格中掺入了大量掺杂离子,GaN晶格取向遭到了破坏,导致了部分GaN(0002)面的倾斜。磁学测量表明均一相的Fe掺杂GaN显现铁磁性,而均一相Mn掺杂GaN没有铁磁性。由于铁磁性Fe单晶和Fe3N团簇的存在,相比于均一性Fe掺杂GaN,过掺杂GaN样品的磁性大幅度增强,而Mn过掺杂GaN样品显现出很弱的铁磁性,这有可能来源于Mn6N2.58相。  相似文献   
8.
报道了在GaN表面以Ni纳米岛结构作为模板,利用电感耦合等离子(ICP)刻蚀制备GaN纳米柱的研究结果。原子力显微镜(AFM)测试结果表明,金属Ni薄膜在快速热退火(RTA)作用下形成了平均直径和高度大约分别为325 nm和70 nm的纳米岛状结构。通过电子扫描显微镜(SEM)照片看出,以GaN表面所形成的Ni纳米岛作为模板图形,通过控制ICP刻蚀时间,在一定的刻蚀时间内(2 min)获得有序的并拥有半极性晶面的GaN纳米柱阵列。这种新颖的半极性GaN纳米柱作为氮化物量子阱或者超晶格结构的生长模板,可以有效减小甚至消除极化效应,提高光电子器件的效率和性能。  相似文献   
9.
ZnAl_2O_4/α-Al_2O_3衬底上GaN的生长   总被引:1,自引:0,他引:1  
研究了直接在 Zn Al2 O4/α-Al2 O3 衬底上用 MOCVD法一步生长 Ga N薄膜 .利用脉冲激光淀积法在α-Al2 O3衬底上淀积了高质量 Zn O薄膜 ,对 Zn O/α-Al2 O3 样品在 110 0℃退火得到了具有 Zn Al2 O4覆盖层的 α-Al2 O3 衬底 ,并在此复合衬底上利用光加热低压 MOCVD法直接生长了纤锌矿结构 Ga N. X射线衍射谱表明反应得到的Zn Al2 O4层为 ( 111)取向 .扫描电子显微镜照片显示随退火时间从小于 3 0 min增加到 2 0 h,Zn Al2 O4表面由均匀的岛状结构衍变为突起的线状结构 ,相应的 Ga N X射线衍射谱表明 Ga N由 c轴单晶变为多晶 ,单晶 Ga N的摇摆曲线半高宽  相似文献   
10.
对InN薄膜在氨气氛下的高温退火行为进行了研究.利用XRD,SEM和XPS对样品进行了分析.结果表明,InN薄膜的结晶质量和表面形貌并不随退火温度单调变化.由于高温退火时N原子的挥发,剩下的In原子在样品表面聚集形成In颗粒.当退火温度高于425℃时,In原子的脱吸附作用增加,从而导致样品表面的In颗粒在退火温度高于425℃时逐渐减少.XRD和SEM结果表明In颗粒密度最高的样品具有最差的结晶质量.这种现象可能是由于In颗粒隔离了其下面的InN与退火气氛的接触,同时,金属In和InN结构上的差异也可能在InN中导致了高密度的结构缺陷,从而降低了InN薄膜的结晶质量.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号