首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
无线电   6篇
  2008年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Orthogonal rotation-invariant moments for digital image processing   总被引:2,自引:0,他引:2  
Orthogonal rotation-invariant moments (ORIMs), such as Zernike moments, are introduced and defined on a continuous unit disk and have been proven powerful tools in optics applications. These moments have also been digitized for applications in digital image processing. Unfortunately, digitization compromises the orthogonality of the moments and, therefore, digital ORIMs are incapable of representing subtle details in images and cannot accurately reconstruct images. Typical approaches to alleviate the digitization artifact can be divided into two categories: 1) careful selection of a set of pixels as close approximation to the unit disk and using numerical integration to determine the ORIM values, and 2) representing pixels using circular shapes such that they resemble that of the unit disk and then calculating ORIMs in polar space. These improvements still fall short of preserving the orthogonality of the ORIMs. In this paper, in contrast to the previous methods, we propose a different approach of using numerical optimization techniques to improve the orthogonality. We prove that with the improved orthogonality, image reconstruction becomes more accurate. Our simulation results also show that the optimized digital ORIMs can accurately reconstruct images and can represent subtle image details.  相似文献   
2.
This paper presents a wavelet-based hyperspectral image coder that is optimized for transmission over the binary symmetric channel (BSC). The proposed coder uses a robust channel-optimized trellis-coded quantization (COTCQ) stage that is designed to optimize the image coding based on the channel characteristics. This optimization is performed only at the level of the source encoder and does not include any channel coding for error protection. The robust nature of the coder increases the security level of the encoded bit stream, and provides a much higher quality decoded image. In the absence of channel noise, the proposed coder is shown to achieve a compression ratio greater than 70:1, with an average peak SNR of the coded hyperspectral sequence exceeding 40 dB. Additionally, the coder is shown to exhibit graceful degradation with increasing channel errors  相似文献   
3.
Two systems are presented for compression of hyperspectral imagery which utilize trellis coded quantization (TCQ). Specifically, the first system uses TCQ to encode transform coefficients resulting from the application of an 8×8×8 discrete cosine transform (DCT). The second systems uses DPCM to spectrally decorrelate the data, while a 2D DCT coding scheme is used for spatial decorrelation. Side information and rate allocation strategies are discussed. Entropy-constrained code-books are designed using a modified version of the generalized Lloyd algorithm. These entropy constrained systems achieve compression ratios of greater than 70:1 with average PSNRs of the coded hyperspectral sequences exceeding 40.0 dB  相似文献   
4.
In this paper, we introduce a new image segmentation scheme that is based on bidirectional labeling and registration and prove that its segmentation performance is equivalent to that of the conventional watershed segmentation algorithm. The proposed bidirectional labeling and registration scheme, which we refer to as bidirectional labeling and registration scheme (BIDS), involves only linear scans of image pixels. It uses one-dimensional operations rather than the queues that are used in traditional segmentation algorithms, which are two-dimensional problems. BIDS also provides unique labels for individual homogeneous regions. In addition to achieving the same segmentation results, BIDS is four times less computationally complex than the conventional watershed by immersion technique.  相似文献   
5.
A training-sequence-based entropy-constrained predictive trellis coded quantization (ECPTCQ) scheme is presented for encoding autoregressive sources. For encoding a first-order Gauss-Markov source, the mean squared error (MSE) performance of an eight-state ECPTCQ system exceeds that of entropy-constrained differential pulse code modulation (ECDPCM) by up to 1.0 dB. In addition, a hyperspectral image compression system is developed, which utilizes ECPTCQ. A hyperspectral image sequence compressed at 0.125 b/pixel/band retains an average peak signal-to-noise ratio (PSNR) of greater than 43 dB over the spectral bands.  相似文献   
6.
This paper presents a wavelet-based image coder that is optimized for transmission over the binary symmetric channel (BSC). The proposed coder uses a robust channel-optimized trellis-coded quantization (COTCQ) stage that is designed to optimize the image coding based on the channel characteristics. A phase scrambling stage is also used to further increase the coding performance and robustness to nonstationary signals and channels. The resilience to channel errors is obtained by optimizing the coder performance only at the level of the source encoder with no explicit channel coding for error protection. For the considered TCQ trellis structure, a general expression is derived for the transition probability matrix. In terms of the TCQ encoding rat and the channel bit error rate, and is used to design the COTCQ stage of the image coder. The robust nature of the coder also increases the security level of the encoded bit stream and provides a much more visually pleasing rendition of the decoded image. Examples are presented to illustrate the performance of the proposed robust image coder  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号