首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Electrocardiograph (ECG) compression techniques are gaining momentum due to the huge database requirements and wide band communication channels needed to maintain high quality ECG transmission. Advances in computer software and hardware enable the birth of new techniques in ECG compression, aiming at high compression rates. In general, most of the introduced ECG compression techniques depend on their evaluation performance on either inaccurate measures or measures targeting random behavior of error. In this paper, a new wavelet-based quality measure is proposed. A new wavelet-based quality measure is proposed. The new approach is based on decomposing the segment of interest into frequency bands where a weighted score is given to the band depending on its dynamic range and its diagnostic significance. A performance evaluation of the measure is conducted quantitatively and qualitatively. Comparative results with existing quality measures show that the new measure is insensitive to error variation, is accurate, and correlates very well with subjective tests.  相似文献   
2.
In this work, we propose an efficient framework for compressing and displaying medical images. Image compression for medical applications, due to available Digital Imaging and Communications in Medicine requirements, is limited to the standard discrete cosine transform-based joint picture expert group. The objective of this work is to develop a set of quantization tables (Q tables) for compression of a specific class of medical image sequences, namely echocardiac. The main issue of concern is to achieve a Q table that matches the specific application and can linearly change the compression rate by adjusting the gain factor. This goal is achieved by considering the region of interest, optimum bit allocation, human visual system constraint, and optimum coding technique. These parameters are jointly optimized to design a Q table that works robustly for a category of medical images. Application of this approach to echocardiac images shows high subjective and quantitative performance. The proposed approach exhibits objectively a 2.16-dB improvement in the peak signal-to-noise ratio and subjectively 25% improvement over the most useable compression techniques.  相似文献   
3.
The author proposed an effective wavelet-based ECG compression algorithm (Rajoub, 2002). The reported extraordinary performance motivated us to explore the findings and to use it in our research activity. During the implementation of the proposed algorithm several important points regarding accuracy, methodology, and coding were found to be improperly substantiated. This paper discusses these findings and provides specific subjective and objective measures that could improve the interpretation of compression results in these research-type problems.  相似文献   
4.
Ventricular tachyarrhythmias, in particular ventricular fibrillation (VF), are the primary arrhythmic events in the majority of patients suffering from sudden cardiac death. Attention has focused upon these articular rhythms as it is recognized that prompt therapy can lead to a successful outcome. There has been considerable interest in analysis of the surface electrocardiogram (ECG) in VF centred on attempts to understand the pathophysiological processes occurring in sudden cardiac death, predicting the efficacy of therapy, and guiding the use of alternative or adjunct therapies to improve resuscitation success rates. Atrial fibrillation (AF) and ventricular tachycardia (VT) are other types of tachyarrhythmias that constitute a medical challenge. In this paper, a high order spectral analysis technique is suggested for quantitative analysis and classification of cardiac arrhythmias. The algorithm is based upon bispectral analysis techniques. The bispectrum is estimated using an autoregressive model, and the frequency support of the bispectrum is extracted as a quantitative measure to classify atrial and ventricular tachyarrhythmias. Results show a significant difference in the parameter values for different arrhythmias. Moreover, the bicoherency spectrum shows different bicoherency values for normal and tachycardia patients. In particular, the bicoherency indicates that phase coupling decreases as arrhythmia kicks in. The simplicity of the classification parameter and the obtained specificity and sensitivity of the classification scheme reveal the importance of higher order spectral analysis in the classification of life threatening arrhythmias. Further investigations and modification of the classification scheme could inherently improve the results of this technique and predict the instant of arrhythmia change.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号