首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   2篇
  2020年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

In this work, we propose a fast conjugate gradient method (CGM) for beamforming, after thoroughly analyzing the performances of the least mean square (LMS), the recursive least square (RLS), and the sample matrix inversion (SMI) adaptive beamforming algorithms. Various experiments are carried out to analyze the performances of each beamformer in detail. The proposed conjugate gradient method does not use the Eigen spread of the signal correlation matrix as in the case of the LMS and the RLS methods. It computes antenna array weights orthogonally for each iteration. Hence the convergence rate and the null depths of the proposed method are much better than the LMS, the SMI the RLS and the classical CGM. Also, the simulation results confirm that this method has a speed improvement of about 60% over the classical conjugate gradient method. This aspect significantly reduces the processor burden and saves a lot of power during the beamforming process. Hence the proposed method is superior compared to the LMS, the RLS, the SMI, and classical CGM and most suitable for high-speed mobile communication.

  相似文献   
2.

Wireless sensor networks produce immense sensor readings within a report interval to the sink. So transfer of information in a resource constrained wireless environment is difficult. Compressive sensing overcomes the resource constrains in wireless environment by exploiting sparsity in transfer with fewer measurement and recovery of original signal. In this research Intelligent Neighbor Aided Compressive Sensing (INACS) scheme is proposed for efficient data assembly in spatial and temporal correlated WSNs. Sparse Matrix has been formed with spatial and temporal coordinates for data transfer. In every sensing period, the sensor node just sends the readings within the sensing period to uniquely selected neighbour based on a correlation. The transmission period provides significant improvement with compressed data using INACS with the measurement matrix. Thus INACS provides reduction in number of transmission and higher reconstruction accuracy. INACS has been compared with Compressive wireless sensing for reduction in number of transmissions achieved. The time series analysis with INACS has been done to validate the simultaneous association between number of transmissions and time period.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号