首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
无线电   14篇
  2022年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2010年   2篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
This paper describes a 32-KB two-read, one-write ported L0 cache for 4.5-GHz operation in 1.2-V 130-nm dual-V/sub TH/ CMOS technology. The local bitline uses a leakage-tolerant self reverse-bias (SRB) scheme with nMOS source-follower pullup access transistors, while preserving robust full-swing operation. Gate-source underdrive of -220 mV on the bitline read-select transistors is established without external bias voltages or gate-oxide overstress. Device-level measurements in the 130-nm technology show 72/spl times/ bitline active leakage reduction, enabling low-V/sub TH/ usage, 40% bitline keeper downsizing, and 16 bitcells/bitline. 11% faster read delay and 2/spl times/ higher dc noise robustness are achieved compared with high-performance dual-V/sub TH/ bitline scheme. Sustained performance and robustness benefits of the SRB technique against conventional dynamic bitline with scaling to 100- and 70-nm technology is also presented.  相似文献   
2.
This paper describes a readout integrated circuit architecture for an infrared focal plane array intended for infrared network-attached video cameras in surveillance applications. The focal plane array consists of 352 × 288 uncooled thin-film microbolometer detectors with a pitch of 25 μm, enabling ambient temperature operation. The circuit features a low-noise readout path, detector resistance mismatch correction and a non-linear ramped current pulse scheme for the electrical biasing of the detectors in order to relax the dynamic range requirement of amplifiers and the ADC in the readout channel, imposed by detector process variation and self-heating during readout. The design is implemented in a 0.35-μm standard CMOS process and two versions of a smaller 32 × 32-pixel test chip have been fabricated and measured for evaluation. The latest test chip achieves a dynamic range of 97 dB and an input-referred RMS noise voltage of 6.4 μV yielding an estimated NETD value of 26 mK with f/1 optics. At a frame rate of 60 FPS the chip dissipates 170 mW of power from a 3.4 V supply.  相似文献   
3.
This paper presents a simple and robust low-power ΔΣ modulator for accurate ADCs in implantable cardiac rhythm management devices such as pacemakers. Taking advantage of the very low signal bandwidth of 500 Hz which enables high oversampling ratio, the objective is to obtain high SNDR and low power consumption, while limiting the complexity of the modulator to a second-order architecture. Significant power reduction is achieved by utilizing a two-stage load-compensated OTA as well as the low-VT devices in analog circuits and switches, allowing the modulator to operate at 0.9 V supply. Fabricated in a 65 nm CMOS technology, the modulator achieves 80 dB peak SNR and 76 dB peak SNDR over a 500 Hz signal bandwidth. With a power consumption of 2.1 μW, the modulator obtains 0.4 pJ/step FOM. To the authors’ knowledge, this is the lowest reported FOM, compared to the previously reported second-order modulators for such low-speed applications. The achieved FOM is also comparable to the best reported results from the higher-order ΔΣ modulators.  相似文献   
4.
5.
Analog Integrated Circuits and Signal Processing - In this paper, an attempt to estimate energy consumption bounds versus signal-to-noise ratio (SNR) and spurious-free dynamic range (SFDR) in CMOS...  相似文献   
6.
Describes a 256-word × 32-bit 4-read, 4-write ported register file for 6-GHz operation in 1.2-V 130-nm technology. The local bitline uses a pseudostatic technique for aggressive bitline active leakage reduction/tolerance to enable 16 bitcells/bitline, low-Vt usage, and 50% keeper downsizing. Gate-source underdrive of -V cc on read-select transistors is established without additional supply/bias voltages or gate-oxide overstress. 8% faster read performance and 36% higher dc noise robustness is achieved compared to dual-Vt bitline scheme optimized for high performance. Device-level measurements in the 130-nm technology show 703× bitline active leakage reduction, enabling continued Vt scaling and robust bitline scalability beyond 130-nm generation. Sustained performance and robustness benefit of the pseudostatic technique against conventional dynamic bitline with keeper-upsizing is also presented  相似文献   
7.
This paper describes the design of a power amplifier (PA) for 802.11n WLAN fabricated in 65 nm CMOS technology. The PA utilizes 3.3 V thick gate oxide (5.2 nm) transistors and a two-stage differential configuration with integrated transformers for input and interstage matching. A methodology used to extract the layout parasitics from electromagnetic (EM) simulations is described. For a 72.2 Mbit/s, 64-QAM, 802.11n OFDM signal at an average and peak output power of 11.6 and 19.6 dBm, respectively, the measured EVM is 3.8%. The PA meets the spectral mask up to an average output power of 17 dBm.  相似文献   
8.
Class-E amplifiers are attractive for wireless handsets because of their high efficiency and simple implementation. However, it requires inductors in its output matching network that are inherently low Q components affecting efficiency and may require significantly large area in fully integrated implementation. In this paper a novel approach of implementing parallel circuit differential class-E amplifier is presented. Instead of using an inductor parallel to the transistor drain of each amplifier, a single capacitor at the single ended side of the balun provides the parallel inductance effect to the switching transistors. As a result, number of inductors required for circuit implementation is reduced which means reduced losses, less area and better tuning of reactance can be achieved. A test circuit is implemented in 0.13 μm CMOS process. Measurement results verify the validity of the concept. The Power Amplifier achieves 22 dBm output power at 2.4 GHz from a 2.5 V with an overall Power Added Efficiency of 38 %.  相似文献   
9.
Increasing leakage currents combined with reduced noise margins significantly degrade the robustness of wide dynamic circuits. In this paper, we describe two conditional keeper topologies for improving the robustness of sub-130-nm wide dynamic circuits. They are applicable in normal mode of operation as well as during burn-in test. A large fraction of the keepers is activated conditionally, allowing the use of strong keepers with leaky precharged circuits without significant impact on performance of the circuits. Compared to conventional techniques, up to 28% higher performance has been observed for wide dynamic gates in a 130-nm technology. In addition, the proposed burn-in keeper results in 64% active area reduction  相似文献   
10.
Analog Integrated Circuits and Signal Processing - This paper presents an ultra-low power, high sensitivity configurable CMOS fluorescence sensing front-end for implantable biosensors at...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号