首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
电工技术   1篇
化学工业   6篇
金属工艺   4篇
建筑科学   1篇
能源动力   52篇
轻工业   2篇
无线电   21篇
一般工业技术   25篇
冶金工业   3篇
自动化技术   5篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   10篇
  2012年   10篇
  2011年   20篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1995年   2篇
  1990年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
1.
The data structure representing a mesh and the operators to create and query such a database play a crucial role in the performance of mesh generation and FE analysis applications. The design of such a database must balance the conflicting requirements of compactness and computational efficiency. In this article, 10 different mesh representations are reviewed for linear tetrahedral and hexahedral meshes. A methodology for calculating the storage and computational costs of mesh representations is presented and the 10 data structures are analysed. Also, a system for ranking different data structures based on their computational and storage costs is devised and the various mesh representations are ranked according to this measure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
The presentations made, as well as the discussions, in the panels at the workshop, Thermal Challenges in Next Generation Electronic Systems (THERMES), are summarized in this paper. The panels dealt with diverse topics including thermal management roadmaps, microscale cooling systems, numerical modeling from the component to system levels, hardware for future high performance and Internet computing architectures, and transport issues in the manufacturing of electronic packages. The focus of the panels was to identify barriers to further progress in each area that require the attention of the research community.  相似文献   
3.
4.
Performance of thermal interface materials (TIMs) used between a microelectronic device and its associated heat spreader is largely dependent on the bulk thermal conductivity of the TIM, but the bond-line thickness (BLT) of the applied material as well as the interfacial contact resistances are also significant contributors to overall performance. Hierarchically Nested Channels (HNCs), created by modifying the surface topology of the chip or the heatsink with hierarchical arrangements of microchannels in order to improve flow, have been proposed to reduce both the required squeezing force and the final BLT at the interfaces. In the present work, a topological optimization framework that enables the design of channel arrangements is developed. The framework is based on a resistance network approximation to Newtonian squeeze flow. The approximation, validated against finite element (FE) solutions, allows efficient, design-oriented solutions for squeeze flow in complex geometries. A comprehensive design sensitivity analysis exploiting the resistance network approximation is also developed and implemented. The resistance approximation and the sensitivity analysis is used to build an automated optimal channel design framework. A Pareto optimal problem formulation for the design of channels is posed and the optimal solution is demonstrated using the framework.  相似文献   
5.
Insects that feed on plants protected by latex canals often sever leaf veins or cut trenches across leaves before feeding distal to the cuts. The insects thereby depressurize the canals and reduce latex exudation at their prospective feeding site. How the cuts affect the distribution and concentration of latex chemicals was not known. We modified a microwave-assisted extraction technique to analyze the spatial distribution of alkaloids in leaves of Lobelia cardinalis (Campanulaceae) that have been trenched by a plusiine caterpillar, Enigmogramma basigera (Lepidoptera: Noctuidae). We produced sharp two dimensional maps of alkaloid distribution by microwaving leaves to transfer alkaloids to TLC plates that were then sprayed with Dragendorff’s reagent to visualize the alkaloids. The leaf prints were photographed and analyzed with image processing software for quantifying alkaloid levels. A comparison of control and trenched leaves documented that trenching reduces alkaloid levels by approximately 50% both distal and proximal to the trench. The trench becomes greatly enriched in alkaloids due to latex draining from surrounding areas. Measurements of exudation from trenched leaves demonstrate that latex pressures are rapidly restored proximal, but not distal to the trench. Thus, the trench serves not only to drain latex with alkaloids from the caterpillar’s prospective feeding site, but also to isolate this section, thereby preventing an influx of latex from an extensive area that likely extends beyond the leaf. Microwave-assisted extraction of leaves has potential for diverse applications that include visualizing the impact of pathogens, leaf miners, sap-sucking insects, and other herbivores on the distribution and abundance of alkaloids and other important defensive compounds.  相似文献   
6.
Evaporation of ethanol from square packed arrays of 3.95 mm diameter copper spheres in a transparent, enclosed chamber is investigated. The enclosure ensures that relatively saturated vapor conditions exist near the free surface. The desired heat flux is imposed on the copper substrate upon which the copper spheres are mounted, and the liquid level in the bed is maintained by wicking from a continuous supply of liquid provided by a syringe pump. Transparent windows in the enclosure allow for visualization of the evaporating liquid meniscus shape, which is recorded for different liquid feeding rates and heat fluxes. Experimentally measured meniscus profiles are compared to analytical results based on surface-energy minimization. A meniscus microregion is defined from the contact line to the length where the liquid thickness reaches 10 μm. An approximate kinetic theory-based analysis estimates that up to ~55% of the total meniscus mass transfer occurs in this microregion.  相似文献   
7.
An experimental investigation of two-phase flow mechanisms during condensation of refrigerant R134a in six small diameter round (4.91 mm), square (Dh=4 mm, α=1), and rectangular (4×6 and 6×4 mm: Dh=4.8 mm, α=0.67 and 1.5; 2×4 and 4×2 mm: Dh=2.67 mm, α =0.5 and 2) was conducted. Unique experimental techniques and test sections were developed to enable the documentation of the flow mechanisms during phase change. For each tube under consideration, flow mechanisms were recorded over the entire range of qualities for five different refrigerant mass fluxes between 150 and 750 kg m−2 s−1. The flow mechanisms were categorized into four different flow regimes: intermittent flow, wavy flow, annular flow, and dispersed flow. In addition, the large amount of data enabled the delineation of several different flow patterns within each flow regime, which provides a clearer understanding of the different modes of two-phase flow. Transition lines between the respective flow patterns and regimes on these maps were established based on the experimental data. It was found that for similar hydraulic diameters, flow regime transitions are not very strongly dependent on tube shape or aspect ratio. These maps and the transition lines can be used to predict the particular flow pattern or regime that will be established for a given mass flux, quality and tube geometry.  相似文献   
8.
Piezoelectric fans are gaining in popularity as low-power-consumption and low-noise devices for the removal of heat in confined spaces. The performance of piezoelectric fans has been studied by several authors, although primarily at the fundamental resonance mode. In this article the performance of piezoelectric fans operating at the higher resonance modes is studied in detail. Experiments are performed on a number of commercially available piezoelectric fans of varying length. Both finite element modeling and experimental impedance measurements are used to demonstrate that the electromechanical energy conversion (electromechanical coupling factors) in certain modes can be greater than in the first bending mode; however, losses in the piezoceramic are also shown to be higher at those modes. The overall power consumption of the fans is also found to increase with increasing mode number. Detailed flow visualizations are also performed to understand both the transient and steady-state fluid motion around these fans. The results indicate that certain advantages of piezoelectric fan operation at higher resonance modes are offset by increased power consumption and decreased fluid flow  相似文献   
9.
Enhancement of forced convective heat transport through the use of evaporating mist flow is investigated analytically and by numerical simulation. A two-phase mist, consisting of finely dispersed water droplets in an airstream, is introduced at the inlet of a longitudinally-finned heat sink. The latent heat absorbed by the evaporating droplets significantly reduces the sensible heating of the air inside the heat sink which translates into higher heat-dissipation capacities. The flow and heat transfer characteristics of mist flows are studied through a detailed numerical analysis of the mass, momentum and energy transport equations for the mist droplets and the airstream, which are treated as two separate phases. The coupling between the two phases is modeled through interaction terms in the transport equations. The effects of inlet mist droplet size and concentration on the thermal performance of the heat sink are analyzed parametrically. The results provide insight into the complex transport processes associated with mist flows. The simulations indicate that significantly higher heat transfer coefficients are obtained with mist flows as compared to air flows, highlighting the potential for the use of mist flows for enhanced thermal management applications.  相似文献   
10.
Uranium–zirconium alloy is the potential candidate material as metallic fuels for nuclear reactor applications. Fabrication of uranium zirconium alloy can be made either by powder metallurgy or by melting method. Both the method has its own advantages and selection of the fabrication route depends on its application as fuel. In this work investigations were carried out on fabrication of uranium–zirconium alloys (i.e. U–40 wt% Zr, U–50 wt% Zr, U–60 wt% Zr and U–70 wt% Zr) using both powder metallurgy and melting method. It is heat treated at different conditions. Apart from other characterization, X-ray diffraction analysis was carried out to evaluate phase content of the alloy and reported here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号