首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117369篇
  免费   2771篇
  国内免费   525篇
电工技术   1249篇
综合类   2551篇
化学工业   17981篇
金属工艺   5442篇
机械仪表   3777篇
建筑科学   3353篇
矿业工程   664篇
能源动力   2329篇
轻工业   8545篇
水利工程   1505篇
石油天然气   531篇
武器工业   6篇
无线电   11866篇
一般工业技术   21141篇
冶金工业   9122篇
原子能技术   557篇
自动化技术   30046篇
  2023年   191篇
  2022年   555篇
  2021年   1106篇
  2020年   751篇
  2019年   825篇
  2018年   15145篇
  2017年   14169篇
  2016年   10840篇
  2015年   1367篇
  2014年   1420篇
  2013年   2194篇
  2012年   4787篇
  2011年   11384篇
  2010年   9726篇
  2009年   7096篇
  2008年   8165篇
  2007年   8937篇
  2006年   1177篇
  2005年   2233篇
  2004年   2195篇
  2003年   2128篇
  2002年   1505篇
  2001年   887篇
  2000年   795篇
  1999年   659篇
  1998年   2186篇
  1997年   1410篇
  1996年   1022篇
  1995年   657篇
  1994年   517篇
  1993年   574篇
  1992年   267篇
  1991年   319篇
  1990年   241篇
  1989年   210篇
  1988年   232篇
  1987年   170篇
  1986年   179篇
  1985年   197篇
  1984年   146篇
  1983年   102篇
  1982年   134篇
  1981年   133篇
  1980年   124篇
  1979年   100篇
  1978年   86篇
  1977年   151篇
  1976年   229篇
  1975年   90篇
  1954年   70篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Transmission electron microscopy (TEM) is an important analysis technique to visualize (bio)macromolecules and their assemblies, including collagen fibers. Many protocols for TEM sample preparation of collagen involve one or more washing steps to remove excess salts from the dispersion that could hamper analysis when dried on a TEM grid. Such protocols are not standardized and washing times as well as washing solvents vary from procedure to procedure, with each research group typically having their own protocol. Here, we investigate the influence of washing with water, ethanol, but also methanol and 2-propanol, for both mineralized and unmineralized collagen samples via a protocol based on centrifugation. Washing with water maintains the hydrated collagen structure and the characteristic banding pattern can be clearly observed. Conversely, washing with ethanol results in dehydration of the fibrils, often leading to aggregation of the fibers and a less obvious banding pattern, already within 1 min of ethanol exposure. As we show, this process is fully reversible. Similar observations were made for methanol and propanol. Based on these results, a standardized washing protocol for collagenous samples is proposed.  相似文献   
2.
Journal of Chemical Ecology - Biocontrol agents such as parasitic wasps use long-range volatiles and host-associated cues from lower trophic levels to find their hosts. However, this chemical...  相似文献   
3.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
4.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
5.
Bioactive glasses and glass-ceramics (GCs) effectively regenerate bone tissue, however most GCs show improved mechanical properties. In this work, we developed and tested a rarely studied bioactive glass composition (24.4K2O-26.9CaO-46.1SiO2-2.6P2O5 mol%, identified as 45S5-K) with different particle sizes and heating rates to obtain a sintered GC that combines good fracture strength, low elastic modulus, and bioactivity. We analyzed the influence of the sintering processing conditions in the elastic modulus, Vickers microhardness, density, and crystal phase formation in the GC. The best GC shows improved properties compared with its parent glass. This glass achieves a good densification degree with a two-step viscous flow sintering approach and the resulting GC shows as high bioactivity as that of the standard 45S5 Bioglass®. Furthermore, the GC elastic modulus (56 GPa) is relatively low, minimizing stress shielding. Therefore, we unveiled the glass sintering behavior with concurrent crystallization of this complex bioactive glass composition and developed a potential GC for bone regeneration.  相似文献   
6.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
7.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
8.
Theoretical Foundations of Chemical Engineering - The corona onset voltage is an important operating parameter in the electrostatic precipitation of nanoparticulate, however, its experimental...  相似文献   
9.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   
10.
We aimed to compare detailed fat distribution and lipid profile between young adults with congenital adrenal hyperplasia due to 21-hydroxylase enzyme deficiency and a control group. We also verified independent associations of treatment duration and daily hydrocortisone dose equivalent (HDE) with lipid profile within patients. This case–control study included 23 patients (7 male and 16 female) matched by an age range of young adults (18–31 years) with 20 control subjects (8 male and 12 female). Dual energy X-ray absorptiometry was used to measure the fat distribution. Male patients demonstrated elevated indices of fat mass for total (7.7 ± 2.1 vs. 4.5 ± 1.3 kg/m2, p = 0.003), trunk (4.0 ± 1.2 vs. 2.2 ± 0.8 kg/m2, p = 0.005), android (0.63 ± 0.24 vs. 0.32 ± 0.15 kg/m2, p = 0.008), gynoid (1.34 ± 0.43 vs. 0.74 ± 0.24 kg/m2, p = 0.005), arm (0.65 ± 0.16 vs. 0.39 ± 0.10 kg/m2, p = 0.009), and leg regions (2.7 ± 0.8 vs. 1.6 ± 0.4 kg/m2, p = 0.005) than the control group, but not in females. However, female patients demonstrated elevated ratio of low-density lipoprotein cholesterol to high-density lipoprotein cholesterol (1.90 ± 0.46 vs. 1.39 ± 0.47, p = 0.009) than the control group, but not in males. Total fat mass was inversely correlated with total testosterone (r = −0.64, p = 0.014) and positively correlated with leptin in males (r = 0.75, p = 0.002). An elevated daily HDE (β = 0.43, p = 0.038 and β = 0.47, p = 0.033) and trunk to total fat mass ratio (β = 0.46, p = 0.025, and β = 0.45, p = 0.037) were independently correlated with impaired lipid profile markers. Although there is no altered lipid profile, male patients demonstrated an increased fat distribution. However, female patients presented with an impaired lipid profile marker but demonstrated close values of normal fat distribution. Interestingly, the dose of glucocorticoid therapy can have some role in the lipid mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号