首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4944篇
  免费   147篇
  国内免费   10篇
电工技术   236篇
综合类   13篇
化学工业   1261篇
金属工艺   136篇
机械仪表   102篇
建筑科学   102篇
矿业工程   2篇
能源动力   207篇
轻工业   391篇
水利工程   7篇
石油天然气   4篇
无线电   480篇
一般工业技术   749篇
冶金工业   905篇
原子能技术   96篇
自动化技术   410篇
  2023年   34篇
  2022年   54篇
  2021年   130篇
  2020年   50篇
  2019年   44篇
  2018年   75篇
  2017年   72篇
  2016年   95篇
  2015年   67篇
  2014年   135篇
  2013年   261篇
  2012年   196篇
  2011年   249篇
  2010年   191篇
  2009年   233篇
  2008年   225篇
  2007年   195篇
  2006年   153篇
  2005年   182篇
  2004年   139篇
  2003年   156篇
  2002年   124篇
  2001年   97篇
  2000年   99篇
  1999年   113篇
  1998年   387篇
  1997年   226篇
  1996年   159篇
  1995年   115篇
  1994年   107篇
  1993年   100篇
  1992年   41篇
  1991年   43篇
  1990年   35篇
  1989年   57篇
  1988年   36篇
  1987年   26篇
  1986年   37篇
  1985年   28篇
  1984年   35篇
  1983年   28篇
  1982年   24篇
  1981年   31篇
  1980年   24篇
  1979年   25篇
  1978年   26篇
  1977年   33篇
  1976年   47篇
  1974年   14篇
  1973年   13篇
排序方式: 共有5101条查询结果,搜索用时 312 毫秒
1.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
2.
While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK) in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter 4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic β-cells under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and facilitates the transport of glucose from the circulation into excrement. It is also known that metformin reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown recently that metformin consumption potentially influences the mortality in patients with type 2 diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another in its long history.  相似文献   
3.
4.
Radiophotoluminescence phenomena have been widely investigated on various types of materials for dosimetry applications. We report that an aluminoborosilicate glass containing 0.005 mol% copper exhibits intense photoluminescence in the visible region induced by X-ray and γ-ray irradiation. The luminescence is assigned to the 3d94s1 → 3d10 transition of Cu+. The proportionality of the intensity of the induced photoluminescence to the irradiation dose was confirmed up to 0.5 kGy using 60Co γ-ray irradiation. Based on the spectroscopic results, a potential mechanism was proposed for the enhancement of the photoluminescence. The exposure to the ionizing radiation generates electron-hole pairs in the glass, and the electrons are subsequently captured by the Cu2+ ions, which are converted to Cu+ and emit the luminescence. For the glass containing 0.01 mol% copper, the pronounced enhancement of the photoluminescence was not observed because the reverse reaction, ie, the capture of the holes by the Cu+ ions, becomes prominent. The photoluminescence induced by the irradiation was stably observed for the glasses kept at room temperature and even for the glasses heat-treated at 150°C. However, the induced photoluminescence could be eliminated by the heat treatment at a temperature at 500°C, and the glass returned to the initial pre-irradiation state. The Cu-doped aluminoborosilicate glass is a potential candidate for use in dosimetry applications.  相似文献   
5.
6.
The cover image is based on the Mini‐Review Well‐defined, environment‐friendly synthesis of polypeptides based on phosgene‐free transformation of amino acids into urethane derivatives and their applications by Takeshi Endo et al., https://doi.org/10.1002/pi.5952 . Cover image © Takeshi Endo Images.

  相似文献   

7.
Summary The potato phosphorylase-catalyzed polymerization of α-D-glucose-1-phosphate (G-1-P) onto poly[styrene-block-(4-vinylbenzyl maltohexaoside)] (1) was performed at the molar ratios of [G-l-P]0 and [maltohexaose]0 of 35, 80, and 250. The product was found to be soluble in dimethyl sulfoxide, which was a good solvent for amylose, and showed the complex-formation with iodine, indicating that the product was assignable to poly[styrene-block-(styrene-graft-amylose)] (2). The quantitative analysis of the liberated phosphoric acid gave the average degree of polymerization o f the glucose unit (n) as 27, 5 1, and 180 for 2-I, 2-II, and 2-III, respectively. Received: 29 November 2002/Accepted: 22 December 2002 Correspondence to Toyoji Kakuchi  相似文献   
8.
A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly( ethylene terephthalate ) (PET) and polyethylene (PE) as the synthetic polymer. PET and PE plates and those pretreated with an oxygen plasma were alternately dipped in calcium and phosphate ion solutions, and then immersed in a metastable calcium phosphate solution supplemented with laminin ( LCP solution ). The PET and PE plates pretreated with an oxygen plasma formed a uniform and continuous layer of a laminin-apatite composite on their surfaces. In contrast, the PET and PE plates that had not been pretreated with an oxygen plasma did not form a continuous layer of a laminin-apatite composite on their surfaces. The hydrophilic functional groups on the PET and PE surfaces introduced by the plasma treatment were responsible for the successful laminin-apatite coruposite coating.  相似文献   
9.
The effect of CF4 plasma etching on diamond surfaces, with respect to treatment time, was investigated using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. SEM observations and Raman spectra indicated an increase in surface roughening on a scale of 10–20 nm, and an increase in crystal defect density was apparent with treatment time in the range of 10 s to 30 min. In contrast, alteration of the diamond surface terminations from oxygen to fluorine was found to be rather rapid, with saturation of the F/C atomic ratio estimated from XPS analysis after treatment durations of 1 min and more. The redox kinetics of Fe(CN)63−/4− was also found to be significantly modified after 10 s of CF4 plasma treatment. This behavior shows that C–F terminations predominantly affect the redox kinetics compared to the effect on the surface roughness and crystal defects. The double-layer capacitance (Cdl) of the electrolyte/CF4 plasma-treated boron-doped diamond interface was found to show a minimum value at 1 min of treatment. These results indicate that a short-duration CF4 plasma treatment is effective for the fabrication of fluorine-terminated diamond surfaces without undesirable surface damage.  相似文献   
10.
The catalytic decomposition of acrylonitrile (AN) over Cu-ZSM-5 prepared with various Cu loadings was investigated. AN conversion, during which the nitrogen atoms in AN were mainly converted to N2, increased as Cu loading increased. N2 selectivities as high as 90–95% were attained. X-ray diffraction measurements (XRD) and temperature-programmed reduction by H2 (H2-TPR) showed the existence of bulk CuO in Cu-ZSM-5 with a Cu loading of 6.4 wt% and the existence of highly dispersed CuO in Cu-ZSM-5 with a Cu loading of 3.3 wt%. Electron spin resonance measurements revealed that Cu-ZSM-5 contains three forms of isolated Cu2+ ions (square-planar, square-pyramidal, and distorted square-pyramidal). The H2-TPR results suggested that in Cu-ZSM-5 with a Cu loading of 2.9 wt% and below, Cu+ existed even after oxidizing pretreatment. The activity of AN decomposition over Cu/SiO2 suggested that CuO could form N2, but, independent of the CuO dispersion, nitrogen oxides (NOx) were formed above 350 °C. Cu+ and the square-pyramidal and distorted square-pyramidal forms of Cu2+ showed low activity for AN decomposition. Temperature-programmed desorption of NH3 suggested that N2 formation from NH3 proceeded on Cu2+, resulting in the formation of Cu+. The Cu+ ions were oxidized to Cu2+ at around 300 °C. Thus, high N2 selectivity over Cu-ZSM-5 with a wide range of temperature was probably attained by the reaction over the square-planar Cu2+, which can be reversibly reduced and oxidized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号