首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1983篇
  免费   142篇
  国内免费   22篇
电工技术   20篇
综合类   9篇
化学工业   518篇
金属工艺   49篇
机械仪表   41篇
建筑科学   46篇
矿业工程   5篇
能源动力   139篇
轻工业   257篇
水利工程   14篇
石油天然气   37篇
无线电   255篇
一般工业技术   374篇
冶金工业   130篇
原子能技术   17篇
自动化技术   236篇
  2024年   12篇
  2023年   50篇
  2022年   78篇
  2021年   135篇
  2020年   86篇
  2019年   97篇
  2018年   107篇
  2017年   100篇
  2016年   101篇
  2015年   75篇
  2014年   99篇
  2013年   166篇
  2012年   119篇
  2011年   146篇
  2010年   70篇
  2009年   73篇
  2008年   65篇
  2007年   39篇
  2006年   39篇
  2005年   31篇
  2004年   30篇
  2003年   26篇
  2002年   32篇
  2001年   23篇
  2000年   20篇
  1999年   14篇
  1998年   38篇
  1997年   20篇
  1996年   23篇
  1995年   26篇
  1994年   21篇
  1993年   26篇
  1992年   7篇
  1991年   16篇
  1990年   13篇
  1989年   16篇
  1988年   13篇
  1987年   6篇
  1986年   7篇
  1985年   10篇
  1984年   8篇
  1983年   10篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1977年   4篇
  1976年   5篇
  1975年   4篇
  1969年   3篇
排序方式: 共有2147条查询结果,搜索用时 15 毫秒
1.
Software is a central component in the modern world and vastly affects the environment’s sustainability. The demand for energy and resource requirements is rising when producing hardware and software units. Literature study reveals that many studies focused on green hardware; however, limited efforts were made in the greenness of software products. Green software products are necessary to solve the issues and problems related to the long-term use of software, especially from a sustainability perspective. Without a proper mechanism for measuring the greenness of a particular software product executed in a specific environment, the mentioned benefits will not be attained. Currently, there are not enough works to address this problem, and the green status of software products is uncertain and unsure. This paper aims to identify the green measurements based on sustainable dimensions in a software product. The second objective is to reveal the relationships between the elements and measurements through empirical study. The study is conducted in two phases. The first phase is the theoretical phase, where the main components, measurements and practices that influence the sustainability of a software product are identified. The second phase is the empirical study that involved 103 respondents in Malaysia investigating current practices of green software in the industrial environment and further identifying the main sustainability dimensions and measurements and their impact on achieving green software products. This study has revealed seven green measurements of software product: Productivity, Usability, Cost Reduction, Employee Support, Energy Efficiency, Resource Efficiency and Tool Support. The relationships are statistically significant, with a significance level of less than 0.01 (p = 0.000). Thus, the hypothesised relationships were all accepted. The contributions of this study revolve around the research perspectives of the measurements to attain a green software product.  相似文献   
2.

Accurate prediction of the liquefaction-induced settlement (\({S}_{\mathrm{lc}}\)) is an essential requirement for a good design of buildings resting on liquefiable ground and subjected to seismic shake. However, prediction of the \({S}_{\mathrm{lc}}\) is not straightforward process and it requires advanced soil models and calibrated soil parameters that are not readily available for designers/practitioners. In addition, the available empirical models to estimate the \({S}_{\mathrm{lc}}\) have been developed using either classical regression analysis or multivariate adaptive regression splines and such techniques produce complicated models. Also, these empirical models have been developed utilizing results of numerical modelling. To overcome these limitations, novel model has been developed in this paper utilizing robust regression analysis driven by artificial intelligence called the evolutionary polynomial regression analysis. The new model has been developed using centrifuge results (real laboratory measurements) and can be easily used to accurately estimate the liquefaction induced settlement. The developed model scored a mean absolute error, root mean square error, mean, standard deviation of the predicted to measured values, coefficient of determination, \(a20 - \mathrm{index}\), and EPR coefficient of determination of 2.12 cm, 2.84 cm, 1.06, 0.19, 0.98, 0.77, and 97%, respectively, for the learning data and 1.73 cm, 3.31 cm, 0.99, 0.17, 0.97, 0.75, and 97%, respectively, for the examination data. The developed model has also been used in a parametric study to provide an insight into the sensitivity of the \({S}_{\mathrm{lc}}\) to the foundation width, building height, pressure applied on the foundation, thickness and relative density of the liquefiable layer, and earthquake intensity. The results obtained from the parametric study are reasonable and in agreement with previous studies in the literature. Thus, the developed model can be employed to optimize designs and to reduce design costs as it does not require complicated analyses and/or expensive computational facilities.

  相似文献   
3.
Abstract

Model order reduction is a common practice to reduce large order systems so that their simulation and control become easy. Nonlinearity aware trajectory piecewise linear is a variation of trajectory piecewise linearization technique of order reduction that is used to reduce nonlinear systems. With this scheme, the reduced approximation of the system is generated by weighted sum of the linearized and reduced sub-models obtained at certain linearization points on the system trajectory. This scheme uses dynamically inspired weight assignment that makes the approximation nonlinearity aware. Just as weight assignment, the process of linearization points selection is also important for generating faithful approximations. This article uses a global maximum error controller based linearization points selection scheme according to which a state is chosen as a linearization point if the error between a current reduced model and the full order nonlinear system reaches a maximum value. A combination that not only selects linearization points based on an error controller but also assigns dynamic inspired weights is shown in this article. The proposed scheme generates approximations with higher accuracies. This is demonstrated by applying the proposed method to some benchmark nonlinear circuits including RC ladder network and inverter chain circuit and comparing the results with the conventional schemes.  相似文献   
4.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
5.
6.
Among the thermoplastic elastomers that play important roles in the polymer industry due to their superior properties, styrene-based species and polyurethane block copolymers are of great interest. Poly(styrene-ethylene-butadiene-styrene) (SEBS) as a triblock copolymer seems to have the potential to meet many demands in different applications due to various industrial requirements where durability, biocompatibility, breaking elongation, and interfacial adhesion are important. In this study, the SEBS triblock copolymer was functionalized with natural (Satureja hortensis, SH) and synthetic (nanopowder, TiO2) agents to obtain composite nanofibers by electrospinning and electrospraying methods for use in biomedical and water filtration applications. The results were compared with thermoplastic polyurethane (TPU) composite nanofibers, which are commonly used in these fields. Here, functionalized SEBS nanofibers exhibited antibacterial effect while at the same time improving cell viability. In addition, because of successful water filtration by using the SEBS composite nanofibers, the material may have a good potential to be used comparably to TPU for the application.  相似文献   
7.
8.
Removal by absorptive ceramic membranes can simultaneously absorb and separate metal ions from water. Alumina/yttria‐stabilized zirconia (Al2O3/YSZ) hollow‐fiber membranes, fabricated using phase inversion and sintering process, were deposited with iron oxide by an in‐situ hydrothermal process. The results showed that α‐Fe2O3 was produced and incorporated across the membranes. A reduction in flux was recorded with the deposition of α‐Fe2O3. However, it improved the adsorption capacity for heavy metal adsorption. The adsorption‐separation test demonstrated that the optimized membrane is able to completely remove Pb(II) ions after two hours.  相似文献   
9.
The technology for transesterification reactions between methyl esters and alcohols is well established by using classical homogeneous alkaline catalysts, which provide high conversion of methyl esters to specialty or nonindigenous esters. However, in certain products where the purity of the esters is of concern, the removal of homogeneous catalysts after the completion of the reaction is a challenge in terms of production cost and water footprint. Therefore, a study to investigate the potential of heterogeneous catalysts was conducted on reactions between methyl palmitate and triethanolamine. The degree of basicity and active surface area of calcium oxide (CaO), zinc oxide (ZnO), and magnesium oxide (MgO) were first characterized by using temperature-programmed desorption (TPD-CO2) and Brunauere–Emmett–Teller (BET), respectively. Among the metal oxides investigated, the CaO catalyst showed the best catalytic activity toward the transesterification process as it gave the highest conversion of methyl palmitate and yielded fatty esteramine compositions similar to the conventional homogeneous catalyst. The optimum transesterification condition by using the CaO catalyst utilized a lower vacuum system of approximately 200 mbar, which could minimize a considerable amount of energy consumption. Furthermore, low CaO dosage of 0.1% was able to give a conversion of 94.5% methyl ester and formed esteramine at 170 °C for 2 h. Therefore, the production of esterquats from esteramine may become more economically feasible through the methyl ester route by using the CaO catalyst, which can be recycled three times.  相似文献   
10.
We present uniaxial tensile test results for 30–50 nm thick freestanding aluminum films. Young’s modulus and ductility were found to decrease monotonically with grain size. Reverse Hall–Petch behavior was observed with no appreciable room temperature creep. Non-linear elasticity with small irreversible deformation was observed for 50 nm thick specimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号