首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学工业   2篇
无线电   1篇
一般工业技术   2篇
冶金工业   3篇
自动化技术   4篇
  2019年   1篇
  2012年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
  1994年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The effect of external calcium concentration ([Ca2+]o) on membrane potential-dependent calcium signals in isolated tiger salamander rod and cone photoreceptor inner segments was investigated with patch-clamp and calcium imaging techniques. Mild depolarizations led to increases in intracellular Ca2+ levels ([Ca2+]i) that were smaller when [Ca2+]o was elevated to 10 mM than when it was 3 mM, even though maximum Ca2+ conductance increased 30% with the increase in [Ca2+]o. When external calcium was lowered to 1 mM [Ca2+]o, maximum Ca2+ conductance was reduced, as expected, but the mild depolarization-induced increase in [Ca2+]i was larger than in 3 mM [Ca2+]o. In contrast, when photoreceptors were strongly depolarized, the increase in [Ca2+]i was less when [Ca2+]o was reduced. An explanation for these observations comes from an assessment of Ca2+ channel gating in voltage-clamped photoreceptors under changing conditions of [Ca2+]o. Although Ca2+ conductance increased with increasing [Ca2+]o, surface charge effects dictated large shifts in the voltage dependence of Ca2+ channel gating. Relative to the control condition (3 mM [Ca2+]o), 10 mM [Ca2+]o shifted Ca2+ channel activation 8 mV positive, reducing channel open probability over a broad range of potentials. Reducing [Ca2+]o to 1 mM reduced Ca2+ conductance but shifted Ca2+ channel activation negative by 6 mV. Thus the intracellular calcium signals reflect a balance between competing changes in gating and permeation of Ca2+ channels mediated by [Ca2+]o. In mildly depolarized cells, the [Ca2+]o-induced changes in Ca2+ channel activation proved stronger than the [Ca2+]o-induced changes in conductance. In response to the larger depolarizations caused by 80 mM [K+]o, the opposite is true, with conductance changes dominating the effects on channel activation.  相似文献   
2.
3.
Evolving technologies, as exemplified by computational grids and Web services, have made it possible to solve new scientific problems that would not have been feasible previously. In order to make such advances available to the community in general and to be able to solve new problems, not necessarily from the same discipline, it is imperative to build tools that provide a common user interface in order that application programmers and users do not have to be concerned with particulars of Web services and their underlying code, computational platforms, or with data file formats. We will describe our efforts in creating a computational chemistry environment that encompasses a general scientific workflow environment, a domain specific example for quantum chemistry, our ongoing design of a workflow user interface, and our efforts at database integration.  相似文献   
4.
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor‐targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.  相似文献   
5.
We present a rigorous way to evaluate the visual perception of correlation in scatterplots, based on classical psychophysical methods originally developed for simple properties such as brightness. Although scatterplots are graphically complex, the quantity they convey is relatively simple. As such, it may be possible to assess the perception of correlation in a similar way. Scatterplots were each of 5.0° extent, containing 100 points with a bivariate normal distribution. Means were 0.5 of the range of the points, and standard deviations 0.2 of this range. Precision was determined via an adaptive algorithm to find the just noticeable differences (jnds) in correlation, i.e., the difference between two side‐by‐side scatterplots that could be discriminated 75% of the time. Accuracy was measured by direct estimation, using reference scatterplots with fixed upper and lower values, with a test scatterplot adjusted so that its correlation appeared to be halfway between these. This process was recursively applied to yield several further estimates. Results of the discrimination tests show jnd(r) = k (1/b – r), where r is the Pearson correlation, and parameters 0 < k, b < 1. Integration yields a subjective estimate of correlation g(r) = ln(1 – br) / ln(1 – b). The values of b found via discrimination closely match those found via direct estimation. As such, it appears that the perception of correlation in a scatterplot is completely described by two related performance curves, specified by two easily‐measured parameters.  相似文献   
6.
Ultrahigh temperature zirconium diboride nanofibers were produced by microwave arc heating using micron-sized raw powder. While microwave heating the ZrB(2) powder, the development of local arcing led to rapid heating and solidification of the samples, along with the creation of nanofibers. The morphology of these high aspect ratio nanofibers was characterized using scanning electron microscopy and transmission electron microscopy. Energy dispersive x-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction showed the composition to contain zirconium, boron, nitrogen, aluminum and oxygen as well as the crystallographic orientation. ZrB(2) nanofiber applications include aerospace and other harsh environments.  相似文献   
7.
Housed within the 11-stranded β-barrel of the green fluorescent protein (GFP) is the arylideneimidazolidinone (AMI) chromophore, the component responsible for fluorescence. This class of small-molecule chromophore has drawn significant attention for its remarkable photophysical and photochemical properties, both within the intact protein and after its denaturation. All of the proteins so far isolated that have visible light fluorescence have been found to contain an AMI chromophore. These proteins comprise an extensive rainbow, ranging from GFP, which contains the simplest chromophore, p-hydroxybenzylideneimidazolidinone (p-HOBDI), to proteins having molecules with longer conjugation lengths and a variety of intraprotein interactions. The fluorescence invariably almost vanishes upon removal of the protective β-barrel. The role of the barrel in hindering internal conversion has been the subject of numerous studies, especially in our laboratories and those of our collaborators. A better understanding of these chromophores has been facilitated by the development of numerous synthetic protocols. These syntheses, which commonly use the Erlenmeyer azlactone method, have evolved in recent years with the development of a [2 + 3] cycloaddition exploited in our laboratory. The synthetic AMI chromophores have allowed delineation of the complex photophysics of GFP and its derivatives. Upon denaturation, AMI chromophores are marked by 4 orders of magnitude of diminution in emission quantum yield (EQY). This result is attributed to internal conversion resulting from conformational freedom in the released chromophore, which is not allowed within the restrictive β-barrel. To date, the photophysical properties of the AMI chromophore remain elusive and have been attributed to a variety of mechanisms, including cis-trans isomerization, triplet formation, hula twisting, and proton transfer. Advanced studies involving gas-phase behavior, solvent effects, and protonation states have significantly increased our understanding of the chromophore photophysics, but a comprehensive picture is only slowly emerging. Most importantly, mechanisms in structurally defined chromophores may provide clues as to the origin of the "blinking" behavior of the fluorescent proteins themselves. One approach to examining the effect of conformational freedom on rapid internal conversion of the chromophores is to restrict the molecules, both through structural modifications and through adjustments of the supramolecular systems. We thus include here a discussion of studies involving the crystalline state, inclusion within natural protein-binding pockets, complexation with metal ions, and sequestration within synthetic cavities; all of this research affirms the role of restricting conformational freedom in partially restoring the EQY. Additionally, new photochemistry is observed within these restricted systems. Many of the studies carried out in our laboratories show promise for these molecules to be adapted as molecular probes, wherein inclusion turns on the fluorescence and provides a signaling mechanism. In this Account, we present an overview of the AMI chromophores, including synthesis, overall photophysics, and supramolecular behavior. A significant amount of work remains for researchers to fully understand the properties of these chromophores, but important progress achieved thus far in photophysics and photochemistry is underscored here.  相似文献   
8.
Knowledge of the Land Surface Emissivity (LSE) in the Thermal Infrared (TIR: 8-12 µm) part of the electromagnetic spectrum is essential to derive accurate Land Surface Temperatures (LSTs) from spaceborne TIR measurements. This study focuses on validation of the emissivity product in the North American ASTER Land Surface Emissivity Database (NAALSED) v2.0 — a mean seasonal, gridded emissivity product produced at 100 m spatial resolution using all Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scenes from 2000 to 2008 over North America (http://emissivity.jpl.nasa.gov). The NAALSED emissivity product was validated over bare surfaces with laboratory measurements of sand samples collected at nine pseudo-invariant sand dune sites located in the western/southwestern USA. The nine sand dune sites cover a broad range of surface emissivities in the TIR. Results show that the absolute mean emissivity difference between NAALSED and the laboratory results for the nine validation sites and all five ASTER TIR bands was 0.016 (1.6%). This emissivity difference is equivalent to approximately a 1 K error in the land surface temperature for a material at 300 K in the TIR.  相似文献   
9.
Mouse spleen T cells can adoptively transfer immunity to Listeria monocytogenes; this activity was markedly enhanced by stimulation with Con A in vitro before transfer. The enhanced and prolonged protection against L. monocytogenes in vivo was correlated with enhanced lysis in vitro of target cells infected with strains of L. monocytogenes that produce listeriolysin O (LLO). One of the targets of such cytotoxic cells from BALB/c (H2d) mice was a peptide that corresponded to amino acids 91 to 99 (p91-99) of the LLO molecule, which satisfies the binding motif of H2-Kd. Listeria-immune CD3+CD8+, but not CD3+CD8-, cells could also lyse H-2-incompatible, infected target cells. Immune cells from C57BL/6 (H2b) mice lysed allogeneic H-2d target cells infected with L. monocytogenes or a Bacillus subtilis transformant that secretes LLO, but did not lyse targets pulsed with p91-99. This H2-unrestricted cytolysis was therefore directed at a fragment of the LLO molecule other than p91-99. Listeria-infected bone marrow macrophages from congenic and recombinant strains of mice were lysed only when they shared the H2-T region or were Qa1-compatible with the immune cytotoxic cells; sharing of the H2-D, Q, or M region was insufficient. Thus, the immune response to L. monocytogenes included cytolytic CD8+ cells that recognized endogenously processed Listeria-derived Ags in the context of the class Ia H2-K molecule, as well as a class Ib H2-T molecule.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号