首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
电工技术   1篇
化学工业   1篇
轻工业   1篇
无线电   8篇
一般工业技术   2篇
原子能技术   3篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1996年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有16条查询结果,搜索用时 0 毫秒
1.
A low temperature process of mixing different sizes of silicon carbide (SiC) particles with a polymer precursor was utilized to synthesize SiC pellets for potential use as inert matrix fuels (IMF) for light water reactors. The lower temperature process is required to prevent the reactions between SiC and the dispersed PuO2 fuel material. The effect of the polymer content and the cold pressing pressure on the packing of SiC particles was investigated. The effect of mixing coarse and fine SiC particles on the density and the pore size distribution was also investigated. It was found that the density and pore size distribution can be tailored by controlling the SiC size compositions, polymer content and pressing pressure at room temperature. A possible mechanism has been proposed to explain the forming of the pores with respect to the geometric arrangement between SiC particles and the polymer precursor. SEM images showed that ceria (cerium oxide) which is a PuO2 surrogate in this study, was well distributed in the pellet.  相似文献   
2.
Spectral analysis of optical mixing measurements   总被引:1,自引:0,他引:1  
A general rigorous theory of optical heterodyne and homodyne measurements is presented. The power spectrum of the photocurrent resulting from two uncorrelated optical beams mixing on a photodetector is derived. In particular, a rigorous analysis is presented for the delayed self-homodyne method which is used to characterize laser source linewidth by a Mach-Zehnder interferometer with a delay exceeding the source coherence length. Existing treatments are generalized to address non-Lorentzian laser sources of arbitrary lineshape. The analysis is further generalized to cover the case of modulated nonstationary sources. An example of the application of this theory is given. It is shown how the theory may be used to interpret an experimental result obtained using the gated delayed self-homodyne technique for characterizing the frequency chirp of laser sources under modulation  相似文献   
3.
Baney  D.M. Sorin  W.V. 《Electronics letters》1988,24(11):669-670
The mixing of a modulated DFB laser with a CW local oscillator can be achieved with a single laser by using a gated modulation technique combined with an appropriate optical delay. Frequency chirp measurements up to ±22 GHz are demonstrated using this technique  相似文献   
4.
The amplitude-phase coupling effect introduces important dynamic line broadening in modulated semiconductor laser systems. The theory of a technique allowing measurement of the broadened spectrum using a single laser is presented. The quantum phase fluctuations of the lasing field are shown to be of great importance to the photocurrent spectrum of the mixed fields. Expressions for the photocurrent spectrum, which is shown to measure the optical field modulation power spectrum, are derived. Measurement results illustrating the theory are also presented  相似文献   
5.
Silicone resins have been used as binders for ceramic frit coatings and can withstand temperatures of 650°C to 1260°C. Conceptually, silicone resins can potentially be used as matrices for high temperature fiber‐reinforced composites. The mechanical and thermal properties of a commercially available silicone resin, Dow Corning® 6‐2230, were characterized. Neat 6‐2230 resin was found to have inferior room temperature mechanical properties such as flexural, tensile and fracture properties when compared to epoxy. The room temperature flexural properties and short beam shear strength of the silicone/glass composites were also found to be lower than those of epoxy/glass composite with similar glass content. However, the silicone resin had better elevated temperature properties. At an elevated temperature of 316°C, the retentions of flexural modulus and strength were 80% and 40% respectively of room temperature values; these were superior to those of phenolic/glass. Unlike the carbon‐based resins, the drop in flexural properties of the silicon/glass laminates with temperature leveled off with increase in temperature beyond 250°C. The resin weight loss at 316°C in 100 cm3/min of flowing air was small compared to other carbon‐based resins such as PMR‐15 and LaRC TPI. Only Avimid‐N appeared comparable to Dow Corning® 6‐2230.  相似文献   
6.
A micromechanical theory is developed to examine the progressive debonding process of a brittle matrix composite containing aligned oblate inclusions under a high state of triaxial tension. Complete debonding is taken to be the debonding mode under such a high triaxial loading and its debonding strength is assumed to be governed by a Weibull probability function in terms of the hydrostatic tension of the inclusions. The micromechanical theory provides the required hydrostatic tensile stress at a given stage of debonding for a given inclusion shape and concentration. This allows one to calculate the debonding process progressively as the applied stress increases. The resulting stress-strain relation of the progressively debonded system is found to start out with that of the perfectly bonded composite, then deviates from it and eventually approaches the stress-strain curve of the corresponding porous material. It is further revealed that debonding with spherical inclusions is completed faster than with thin discs and it also occurs faster at a lower volume concentration of inclusions. The loss of stiffness of the transversely isotropic composite is also established as a function of inclusion shape and concentration for all five independent moduli; these moduli are seen to decrease gradually in the initial stage, then drop sharply while progressively debonding and finally level off again as all inclusions become debonded.  相似文献   
7.
In this paper, dispersion analysis of optical components and systems is presented using a formalism based on the elementary matrices and the $N$-matrix, first described by Jones. This approach readily incorporates both phase and amplitude dispersion in a generalized dispersion framework. The method simplifies the analysis of the combined effects of group delay, differential group delay, amplitude slope, and differential amplitude slope as compared to traditional Jones matrix methods. Higher order polarization-mode dispersion and the effects of concatenation are presented along with a discussion of measurement principles. The application of the elementary matrix concept to Mueller matrix methods in Stokes space is also discussed.   相似文献   
8.
The mechanical properties of silicon carbide (SiC) inert matrix fuel (IMF) pellets fabricated by a low temperature (1050 °C) polymer precursor route were evaluated at room temperature. The Vickers hardness was mainly related to the chemical bonding strength between the amorphous SiC phase and the β-SiC particles. The biaxial fracture strength with pre-notch and fracture toughness were found to be mostly controlled by the pellet density. The maximum Vickers hardness, biaxial fracture strength with pre-notch and fracture toughness achieved were 5.6 GPa, 201 MPa and 2.9 MPa m1/2 respectively. These values appear to be superior to the reference MOX or UO2 fuels. Excellent thermal shock resistance for the fabricated SiC IMF was proven and the values were compared to conventional UO2 pellets. XRD studies showed that ceria (PuO2 surrogate) chemically reacted with the polymer precursor during sintering, forming cerium oxysilicate. Whether PuO2 will chemically react in a similar manner remains unclear.  相似文献   
9.
In this paper, we examine thermal noise and radiation-pressure effects in MEMS tunable Fabry-Perot etalons. We show that thermal noise causes a jitter in the center wavelength in very high finesse etalons. In turn, the jitter causes an effective increase in the time-averaged filter bandwidth. Radiation pressure is of little consequence in conventional Fabry-Perot etalons, but it can give rise to nonlinearities and hysteresis in the tuning response of high-finesse MEMS filters. We develop models of noise and optical nonlinearities and compare the models with a series of measurements on commercial tunable high-finesse MEMS Fabry-Perot etalons  相似文献   
10.
In the present work, liquid phase sintered SiC (LPS-SiC) was proposed as an inert matrix for the particle dispersed inert matrix fuel (IMF). The fuel particles containing plutonium and minor actinides were substituted with pure yttria stabilized zirconia beads. The LPS-SiC matrix was produced from the initial mixtures prepared using submicron sized α-SiC powder and oxide additives Al2O3, Y2O3 in the amount of 10 wt.% with the molar ratio 1Y2O3/1Al2O3. Powder mixtures were sintered using two sintering methods; namely conventional high temperature sintering and novel spark plasma sintering at different temperatures depending on the method applied in order to obtain dense samples. The phase reaction products were identified using X-ray diffraction (XRD) and microstructures were investigated using light microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) techniques. The influence of powder mixing methods, sintering temperatures, pressures applied and holding time on the density of the obtained pellets was investigated. The samples sintered by slow conventional sintering show lower relative density and more pronounced interaction between the fuel particles and matrix in comparison with those obtained with the fast spark plasma sintering method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号