首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 17 毫秒
1
1.
Reductions in CMOS SRAM cell static noise margin (SNM) due to intrinsic threshold voltage fluctuations in uniformly doped minimum-geometry cell MOSFETs are investigated for the first time using compact physical and stochastic models. Six sigma deviations in SNM due to intrinsic fluctuations alone are projected to exceed the nominal SMM for sub-100-nm CMOS technology generations. These large deviations pose severe barriers to scaling of supply voltage, channel length, and transistor count for conventional 6T SRAM-dominated CMOS ASICs and microprocessors  相似文献   
2.
A circuit design methodology minimizing total power drain of a static complementary metal-oxide-semiconductor (CMOS) random logic network for a prescribed performance, operating temperature range, and short channel threshold voltage rolloff is investigated. Physical, continuous, smooth, and compact “transregional” MOSFET drain current models that consider high-field effects in scaled devices and permit tradeoffs between saturation drive current and subthreshold leakage current are employed to model CMOS circuit performance and power dissipation at low voltages. Transregional models are used in conjunction with physical short channel MOSFET threshold voltage rolloff models and stochastic interconnect distributions to project optimal supply voltages, threshold voltages, and device channel widths minimizing total power dissipated by CMOS logic circuits for each National Technology Roadmap for Semiconductors (NTRS) technology generation. Optimum supply voltage, corresponding to minimum total power dissipation, is projected to scale to 510 mV for the 50-nm 10-GHz CMOS generation in the year 2012. Techniques exploiting datapath parallelism to further scale the supply voltage are shown to offer decreasing reductions in power dissipation with technology scaling  相似文献   
3.
4.
We have investigated the effects of oxide soft breakdown (SBD) on the stability of CMOS 6T SRAM cells. Gate-to-diffusion leakage currents of 20-50 μA at the n-FET source can result in a 50% reduction of noise margin. Breakdown at other locations in the cell may be less deleterious depending on n-FET width. This approach gives targets for tolerable values of leakage caused by gate-oxide breakdown  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号