首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
无线电   6篇
一般工业技术   1篇
自动化技术   7篇
  2021年   1篇
  2019年   1篇
  2014年   3篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Consider the problem of partitioned scheduling of an implicit-deadline sporadic task set on heterogeneous multiprocessors to meet all deadlines. Each processor is either of type-1 or type-2. We present a new algorithm, FF-3C, for this problem. FF-3C offers low time-complexity and provably good performance. Specifically, FF-3C offers (i) a time-complexity of O(n?max(m,logn)+m?logm), where n is the number of tasks and m is the number of processors and (ii) the guarantee that if a task set can be scheduled by an optimal partitioned-scheduling algorithm to meet all deadlines then FF-3C meets all deadlines as well if given processors at most $\frac{1}{1-\alpha}$ times as fast (referred to as speed competitive ratio) and tasks are scheduled using EDF; where α is a property of the task set. The parameter α is in the range (0,0.5] and for each task, it holds that its utilization is no greater than α or greater than 1?α on each processor type. Thus, the speed competitive ratio of FF-3C can never exceed 2. We also present several extensions to FF-3C; these offer the same performance guarantee and time-complexity but with improved average-case performance. Via simulations, we compare the performance of our new algorithms and two state-of-the-art algorithms (and variations of the latter). We evaluate algorithms based on (i) running time and (ii) the necessary multiplication factor, i.e., the amount of extra speed of processors that the algorithm needs, for a given task set, so as to succeed, compared to an optimal task assignment algorithm. Overall, we observed that our new algorithms perform significantly better than the state-of-the-art. We also observed that our algorithms perform much better in practice, i.e., the necessary multiplication factor of the algorithms is much smaller than their speed competitive ratio. Finally, we also present a clustered version of the new algorithm.  相似文献   
2.
Interference-limited opportunistic relaying with reactive sensing   总被引:1,自引:0,他引:1  
This work evaluates opportunistic relaying in the presence of thermal noise as well as interference, when channel sensing is conducted reactively, in slow fading environments. The studied scenario employs a single gateway that provides access towards several destinations with weak links and exploits a network of intermediate relays. In sharp contrast to prior art, no inter-relay channel state information or communication is assumed, no network coding is needed, while low-complexity receivers at each destination are employed. It is shown that information can be relayed without delay, while harvesting benefits of cooperative diversity, even at the presence of interference. The participating relays are required to offer strong paths towards source and destination, while at the same time they are as "isolated" as possible from each other. From that perspective, the notion of relay "usefulness" is redefined in both noise and interference-limited environments, under opportunistic relaying.  相似文献   
3.
Evaluation of Kalman filtering for network time keeping   总被引:6,自引:0,他引:6  
Time information is critical for a variety of applications in distributed environments that facilitate pervasive computing and communication. This work describes and evaluates a novel Kalman filtering algorithm for end-to-end time synchronization between a client computer and a server of "true" time [e.g., a Global Positioning System (GPS) source] using messages transmitted over packet-switched networks, such as the internet. The messages exchanged have the network time protocol (NTP) format, and the algorithm evaluated, is performed only at the client side. The Kalman filtering algorithm is compared to two other techniques widely used, based on linear programming and statistical averaging, and the experiments involve independent consecutive measurements (Gaussian case) or measurements exhibiting long-range dependence (self-similar case). Performance is evaluated according to the estimation error of frequency offset and time offset between client and server clock, the standard deviation of the estimates and the number of packets used for a specific estimation. The algorithms could exploit existing NTP infrastructure, and a specific example is presented.  相似文献   
4.
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising two different types of processors—such a platform is referred to as two-type platform. We present two low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a platform in which processors are $1+\frac{\alpha}{2}$ times faster and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 1+α times faster. The parameter 0<α≤1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than 1. We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring how much faster processors the algorithms need (which is upper bounded by $1+\frac{\alpha}{2}$ for SA and 1+α for SA-P) in order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated by their theoretical bounds. Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running orders of magnitude faster.  相似文献   
5.
The multiprocessor scheduling scheme NPS-F for sporadic tasks has a high utilisation bound and an overall number of preemptions bounded at design time. NPS-F binpacks tasks offline to as many servers as needed. At runtime, the scheduler ensures that each server is mapped to at most one of the m processors, at any instant. When scheduled, servers use EDF to select which of their tasks to run. Yet, unlike the overall number of preemptions, the migrations per se are not tightly bounded. Moreover, we cannot know a priori which task a server will be currently executing at the instant when it migrates. This uncertainty complicates the estimation of cache-related preemption and migration costs (CPMD), potentially resulting in their overestimation. Therefore, to simplify the CPMD estimation, we propose an amended bin-packing scheme for NPS-F allowing us (i) to identify at design time, which task migrates at which instant and (ii) bound a priori the number of migrating tasks, while preserving the utilisation bound of NPS-F.  相似文献   
6.
Hard real- time multiprocessor scheduling has seen, in recent years, the flourishing of semi-partitioned scheduling algorithms. This category of scheduling schemes combines elements of partitioned and global scheduling for the purposes of achieving efficient utilization of the system’s processing resources with strong schedulability guarantees and with low dispatching overheads. The sub-class of slot-based “task-splitting” scheduling algorithms, in particular, offers very good trade-offs between schedulability guarantees (in the form of high utilization bounds) and the number of preemptions/migrations involved. However, so far there did not exist unified scheduling theory for such algorithms; each one was formulated in its own accompanying analysis. This article changes this fragmented landscape by formulating a more unified schedulability theory covering the two state-of-the-art slot-based semi-partitioned algorithms, S-EKG and NPS-F (both fixed job-priority based). This new theory is based on exact schedulability tests, thus also overcoming many sources of pessimism in existing analysis. In turn, since schedulability testing guides the task assignment under the schemes in consideration, we also formulate an improved task assignment procedure. As the other main contribution of this article, and as a response to the fact that many unrealistic assumptions, present in the original theory, tend to undermine the theoretical potential of such scheduling schemes, we identified and modelled into the new analysis all overheads incurred by the algorithms in consideration. The outcome is a new overhead-aware schedulability analysis that permits increased efficiency and reliability. The merits of this new theory are evaluated by an extensive set of experiments.  相似文献   
7.
Real-Time Systems - In general computing systems, a job (process/task) may suspend itself whilst it is waiting for some activity to complete,&nbsp;e.g., an accelerator to return data. In...  相似文献   
8.
Collaborative beamforming among a set of distributed terminals is studied, assuming a) no specialized RF hardware for carrier frequency synchronization, and b) zero feedback from destination (either in the form of pilot signals or explicit messages). Our goal is to provide a solution for conventional radios (not necessarily wideband), when the link between a single source transmitter and destination is too weak, so that no signal can be reliably received at the destination. In such critical case, zero feedback messages from destination to the multiple transmitters cannot be assumed, even when the destination is equipped with powerful hardware. A solution is provided for conventional radios in relevant critical applications, such as in emergency radio. The proposed scheme simply exploits lack of synchronization among distributed carriers, operating at the same nominal carrier frequency. It is shown that such beamforming is possible and its performance is analytically quantified. Results include asymptotic analysis for the case of large number of transmitters.  相似文献   
9.
A simple Cooperative diversity method based on network path selection   总被引:60,自引:0,他引:60  
Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However, most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M relay nodes is required, such as those proposed by Laneman and Wornell (2003). The simplicity of the technique allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability, and efficiency in future 4G wireless systems.  相似文献   
10.
Known algorithms capable of scheduling implicit-deadline sporadic tasks over identical processors at up to 100% utilisation invariably involve numerous preemptions and migrations. To the challenge of devising a scheduling scheme with as few preemptions and migrations as possible, for a given guaranteed utilisation bound, we respond with the algorithm NPS-F. It is configurable with a parameter, trading off guaranteed schedulable utilisation (up to 100%) vs preemptions. For any possible configuration, NPS-F introduces fewer preemptions than any other known algorithm matching its utilisation bound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号