首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The measurement technique of frequency-resolved optical gating is applied to determine the nonlinear switching characteristics of a passively modelocked figure-of-eight erbium-doped fiber laser. By completely characterizing the intensity and phase of the laser output pulses, the intracavity fields in the nonlinear amplifying loop mirror of the laser cavity are determined by numerical propagation using the nonlinear Schrodinger equation. Excellent switching of 95% can be achieved as a result of uniform phase characteristics developed by pulses propagating in the nonlinear amplifying loop mirror  相似文献   
2.
Complete characterization of ultrashort pulse sources at 1550 nm   总被引:1,自引:0,他引:1  
This paper reviews the use of frequency-resolved optical gating (FROG) to characterize mode-locked lasers producing ultrashort pulses suitable for high-capacity optical communications systems at wavelengths around 1550 nm, Second harmonic generation (SHG) FROG is used to characterize pulses from a passively mode-locked erbium-doped fiber laser, and both single-mode and dual-mode gain-switched semiconductor lasers. The compression of gain-switched pulses in dispersion compensating fiber is also studied using SHG-FROG, allowing optimal compression conditions to be determined without a priori assumptions about pulse characteristics. We also describe a fiber-based FROG geometry exploiting cross-phase modulation and show that it is ideally suited to pulse characterization at optical communications wavelengths. This technique has been used to characterize picosecond pulses with energy as low as 24 pJ, giving results in excellent agreement with SHG-FROG characterization, and without any temporal ambiguity in the retrieved pulse  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号