首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
无线电   8篇
一般工业技术   3篇
自动化技术   2篇
  2002年   4篇
  1999年   1篇
  1998年   5篇
  1991年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Presents empirical evidence that metrics on communication artifacts generated by groupware tools can be used to gain significant insight into the development process that produced them. We describe a test-bed for developing and testing communication metrics, a senior-level software engineering project course at Carnegie Mellon University, in which we conducted several studies and experiments from 1991-1996 with more than 400 participants. Such a test-bed is an ideal environment for empirical software engineering, providing sufficient realism while allowing for controlled observation of important project parameters. We describe three proof-of-concept experiments to illustrate the value of communication metrics in software development projects. Finally, we propose a statistical framework based on structural equations for validating these communication metrics  相似文献   
2.
On June 11, 2000, the first vicarious calibration experiment in support of the Multi-angle Imaging SpectroRadiometer (MISR) was conducted. The purpose of this experiment was to acquire in situ measurements of surface and atmospheric conditions over a bright, uniform area. These data were then used to compute top-of-atmosphere (TOA) radiances, which were correlated with the camera digital number output, to determine the in-flight radiometric response of the on-orbit sensor. The Lunar Lake Playa, Nevada, was the primary target instrumented by the Jet Propulsion Laboratory for this experiment. The airborne MISR simulator (AirMISR) on board a NASA ER-2 acquired simultaneous observations over Lunar Lake. The in situ estimations of top-of-atmosphere radiances and AirMISR measurements at a 20-km altitude were in good agreement with each other and differed by 9% from MISR measurements. The difference has been corrected by adjusting the gain coefficients used in MISR standard product generation. Data acquired simultaneously by other sensors, such as Landsat, the Terra Moderate-Resolution Imaging SpectroRadiometer (MODIS), and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS), were used to validate this correction. Because of this experiment, MISR radiances are 9% higher than the values based on the on-board calibration. Semiannual field campaigns are planned for the future in order to detect any systematic trends in sensor calibration.  相似文献   
3.
4.
MISR prelaunch instrument calibration and characterization results   总被引:1,自引:0,他引:1  
Each of the nine cameras that compose the Multi-angle Imaging SpectroRadiometer (MISR) has been rigorously tested, characterized, and calibrated. Requirements on these tests include a 3% (1σ) radiometric calibration requirement, spectral response function determination of both the in- and out-of-band regions, and distortion mapping. The latter test determines the relative look-angle to the ground corresponding to each focal plane detector element. This is established to within one-tenth of the instantaneous field-of-view. Most of the performance testing was done on the cameras as they completed assembly. This was done to take advantage of the serial delivery of the hardware, minimize the required size of the thermal-vacuum facilities, and allow testing to occur early in the schedule allocated for the hardware build. This proved to be an effective strategy, as each of the test objectives was met. Additional testing as an integrated instrument included verification of the data packetization, camera pointing, and clearances of the fields-of-view. Results of these studies have shown that the MISR cameras are of high quality and will meet the needs of the MISR science community. Highly accurate calibration data are on-hand and available for conversion of camera output to radiances  相似文献   
5.
The Multi-angle Imaging SpectroRadiometer (MISR) instrument is scheduled for launch aboard the first of the Earth Observing System (EOS) spacecraft, EOS-AM1. MISR will provide global, radiometrically calibrated, georectified, and spatially coregistered imagery at nine discrete viewing angles and four visible/near-infrared spectral bands. Algorithms specifically developed to capitalize on this measurement strategy will be used to retrieve geophysical products for studies of clouds, aerosols, and surface radiation. This paper provides an overview of the as-built instrument characteristics and the application of MISR to remote sensing of the Earth  相似文献   
6.
The directional-hemispherical reflectance is obtained for Spectralon, the material chosen for onboard radiometric calibration of the multiangle imaging spectroradiometer, at laser wavelengths of 442, 632.8, and 859.9 nm. With p- and s-polarized incident light and for an angle of incidence of 45 degrees , the bidirectional reflectance distribution function was measured over a polar angle range of 1-85 degrees and a range of azimuthal angles of 0-180 degrees in 10 degrees increments. The resultant directional-hemispherical reflectance is found by integration to be 1.00 ? 0.01 at 442 nm, 0.953 ? 0.01 at 632.8 nm, and 0.956 ? 0.01 at 859.9 nm. The experimental methodology and the data analysis are presented together with a full discussion of the primary experimental errors.  相似文献   
7.
The Multiangle Imaging SpectroRadiometer (MISR) instrument for the Earth Observing System (EOS) will provide a unique opportunity for studying the ecology and climate of the Earth through the acquisition of systematic, global multiangle imagery in reflected sunlight. MISR employs nine discrete cameras pointed at fixed angles, viewing the nadir direction and forward and aftward along the spacecraft ground track. Each camera is a charge-coupled-device –based pushbroom imager. Within a 7-minute period, every point in a 204-km-wide swath is imaged at the nine viewing angles, ensuring observations acquired under virtually identical illumination and atmospheric conditions. The cameras will image the Earth in the nadir direction and at 30.7°, 45.6°, 60.0°, and 72.5° forward and aftward of the local vertical at the Earth's surface. Images at each angle will be obtained in four spectral bands centered at 440, 550, 670, and 860 nm. MISR is capable of taking image data in two different spatial resolution modes: Local Mode, in which selected targets are observed with 240-m spatial sampling, and Global Mode, where the entire sunlit Earth is observed continuously with 1.92-km sampling. Absolute radiometric calibration of the MISR instrument will be performed in-flight using special on-board hardware. The data produced by MISR will be valuable in a number of scientific discipline areas, and MISR images and geophysical products will be archived at the EOS Data and Information System to make them available to the broad scientific community.  相似文献   
8.
The Multi-angle Imaging SpectroRadiometer (MISR) instrument consists of nine cameras, four spectral bands each, and an on-board calibrator (OBC). Experiments using the latter allow camera radiometric coefficients to be updated bimonthly. Data products are thus calibrated to a stable radiometric scale, even in the presence of instrument response changes. The camera, band, and pixel-relative calibrations are accurately determined using the OBC. Conversely, as the OBC itself is subject to response degradation, MISR also conducts annual field vicarious calibration campaigns. The first of these, conducted in June 2000 at a desert site in Nevada, has been used to establish the present absolute radiometric scale. Validation of this radiometric scale, using AirMISR, shows consistency to within 4%. Following these studies, however, it was determined that MISR radiometry is subject to scene-dependent effects due to ghosting that, for the Nevada test sites, reduces the apparent radiance by 3%. Correction for this effect is required in order to avoid radiometric errors over sites that do not exhibit the same background contrast. Additional studies are in progress, with plans to correct for scene-contrast effects in future Level 1B1 processing.  相似文献   
9.
The Multi-angle Imaging SpectroRadiometer (MISR) consists of nine cameras pointing from nadir to an extreme of 70.5/spl deg/ in the view angle. It is a pushbroom imager with four spectral bands per camera. Instrument specifications call for each camera to be calibrated to an absolute uncertainty of 3% and to within 1% relative to the other cameras. To accomplish this, the MISR instrument utilizes an on-board calibrator (OBC) to provide updates to the instrument gain coefficients on a bimonthly basis (i.e. once every two months). Spectralon diffuse panels are used in the OBC to provide a uniform target for the nine MISR cameras to view. The radiometric scale of the OBC is established through the use of photodiodes. The stability of the MISR OBC system and its in-flight calibration are discussed.  相似文献   
10.
The scientific objectives, instrument concept, and data plan for the multiangle imaging spectroradiometer (MISR), an experiment proposed for the Eos (Earth Observing System) mission, are described. MISR is a pushbroom imaging system designed to obtain continuous imagery of the sunlit Earth at four different view angles (25.8°, 45.6°, 60.0°, and 72.5° relative to the vertical at the Earth's surface), in both the forward and aftward directions relative to nadir, using eight separate cameras. Observations will be acquired in four spectral bands, centered at 440, 550, 670, and 860 nm. Data analysis algorithms will be applied to MISR imagery to retrieve the optical, geometric, and radiative properties of complex, three-dimensional scenes, such as aerosol-laden atmospheres above a heterogeneously reflecting surface, nonstratified cloud systems, and vegetation canopies. The MISR investigation will address a number of scientific questions concerning the climatic and ecological consequences of many natural and anthropogenic processes, and will furnish the aerosol information necessary  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号