首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   1篇
一般工业技术   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We describe the operational algorithm for the retrieval of stratospheric, tropospheric, and total column densities of nitrogen dioxide (NO/sub 2/) from earthshine radiances measured by the Ozone Monitoring Instrument (OMI), aboard the EOS-Aura satellite. The algorithm uses the DOAS method for the retrieval of slant column NO/sub 2/ densities. Air mass factors (AMFs) calculated from a stratospheric NO/sub 2/ profile are used to make initial estimates of the vertical column density. Using data collected over a 24-h period, a smooth estimate of the global stratospheric field is constructed. Where the initial vertical column densities exceed the estimated stratospheric field, we infer the presence of tropospheric NO/sub 2/, and recalculate the vertical column density (VCD) using an AMF calculated from an assumed tropospheric NO/sub 2/ profile. The parameters that control the operational algorithm were selected with the aid of a set of data assembled from stratospheric and tropospheric chemical transport models. We apply the optimized algorithm to OMI data and present global maps of NO/sub 2/ VCDs for the first time.  相似文献   
2.
The absorption by atmospheric nitrogen dioxide (NO2) gas in the visible has been traditionally neglected in the retrieval of oceanic parameters from satellite measurements. Recent measurements of NO2 from spaceborne sensors show that over the Eastern United States the NO2 column amount often exceeds 1 Dobson Unit (approximately 2.69x10(16) molecules/cm2). Our radiative transfer sensitivity calculations show that under high NO2 conditions (approximately 1x10(16) molecules/cm2) the error in top-of-atmosphere (TOA) reflectance in the blue channels of the sea-viewing wide field-of-view sensor (SeaWiFS) and moderate-resolution imaging spectroradiometer (MODIS) sensors is approximately 1%. This translates into approximately 10% error in water-leaving radiance for clear waters and to higher values (>20%) in the coastal areas. We have developed an atmospheric-correction algorithm that allows an accurate retrieval of normalized water-leaving radiances (nLws) in the presence of NO2 in the atmosphere. The application of the algorithm to 52 MODIS scenes over the Chesapeake Bay area show a decrease in the frequency of negative nLw estimates in the 412 nm band and an increase in the value of nLws in the same band. For the particular scene reported in this paper, the mean value of nLws in the 412 nm band increased by 17%, which is significant, because for the MODIS sensor the error in nLws attributable to the digitization error in the observed TOA reflectance over case 2 waters is approximately 2.5%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号