首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   1篇
无线电   2篇
  2013年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
We study numerically the synchronization of two multimode semiconductor lasers unidirectionally coupled in an open-loop configuration, focusing on the comparison with the results obtained in the single-mode case. Anticipative and isochronous synchronization, and their range of validity, are analyzed from the point of view of the total lasing output, and the synchronization between individual modes is studied. Selective injection is also examined and compared with global injection. In light of these results, message encoding and decoding via multimode synchronization is analyzed.  相似文献   
2.
Demultiplexing chaos from multimode semiconductor lasers   总被引:3,自引:0,他引:3  
We show numerically that the injection of two chaotic modes of a multimode semiconductor laser with optical feedback into two single-mode stand-alone semiconductor lasers leads to chaotic synchronization between the respective intensities. The effect of parameter mismatch between the transmitter and receiver lasers is examined, and it is concluded that the observed synchronization is a consequence of injection locking. Under these conditions, the possibility of using this demultiplexing scheme for message transmission is examined.  相似文献   
3.
Flow length determination is one of the most important tasks in injection mold design. In order to achieve the perfect filling of the mold, proper designs for the channel depth and other injection parameters (such as melt temperature, injection pressure and etc.) should be conducted. In this research, melt temperature and injection pressure were considered as input parameters to investigate the flow length, in the most commonly used plastics including acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyamide 6.6 (PA 6.6), polyoxymethylene (POM). This study was carried out, based on various channel depths, according to ASTM D 3123. A new method based on a fuzzy logic method was developed to predict the amount of flow length in relation to the input parameters such as pressure, channel depth, and temperature. When the present method is used, the problem of finding the optimum mold design can be solved faster compared to the traditional modeling programs. The largest estimated amounts of flow lengths by the fuzzy logic model were 1215, 596, 963 and 1040 mm for POM, PC, PA 6.6 and ABS, respectively. The maximum measured values were 1235, 579, 948 and 1050 mm for the same material. Experimental tests have been conducted to justify the accuracy of the developed method. It was confirmed by regression analysis that the amount of R 2 for the measured and estimated values was 0.920529. The results of this research show that the fuzzy logic system is a reliable method to predict the short shots in an injection process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号